

A comparison of numerical and analogue models of subduction initiation

Antoine Auzemery

<u>Co-authors:</u> Ernst Willingshofer, Philippe Yamato, Thibault Duretz, Dimitrios Sokoutis, Jean-Pierre Brun.

Universiteit Utrecht

"The method is not important.

The scientific question is what matters."

Jean-Pierre Brun

Analogue, numerical, analytical = Methods

... not science

Research Focus: Subduction Initiation

TITLE-ABS-KEY (subduction AND initiation)

SOURCE: SCOPUS

Subduction initiation: Spontaneous vs Induced

A problem of forces ...

Subduction require compressional force of at least 7 x 10¹² N/m

Where & When does Subduction initiate?

SI is extremely fast

Most initiation events are proximal to pre-existing subduction zones

Crameri et al, 2020; Ulvrova et al. 2019

90% of the worldwide trenches are located at less than 200 km from continental margins

How does subduction initiate?

Intra-oceanic

Transform faults (e.g. Gerya, 2008) Mariana trench?

Passive margin

Caribbean? Scotia Sea?

Mid-oceanic ridge or core complex (e.g. Maffione et al. 2015) Dinarides ? New Caledonia?

Our study

e. Plume-induced

Plume induced (Gerya 2015; Burov and Cloetingh 2010)

•••

How subduction initiate?

Yes but under restricted conditions ...

Forced SI

- Deformation at PM controlled by the ductile strength continental crust.
- Underthrusting regime is governed by the strength of the subcontinental lithospheric mantle

Auzemery et al., 2021. Tectonophysics, 817, 229042.

Analogue model of SI

Auzemery et al. (2021). Passive margin inversion controlled by stability of the mantle lithosphere. *Tectonophysics*.

Distribution of deformations with time

Subduction initiation at passive margins I Passive margin inversion Deformation zone DZ DZ DZ

t= 25Myr

2) Crust-mantle Coupling/decoupling at PM

Auzemery et al., 2022. Influence of magma-poor versus magma-rich passive margins on subduction initiation. Gondwana research

Application to magma-poor versus magma-rich passive margins (Auzemery et al., 2022. Gondwana research)

Natural examples

A-B Western Alps

60-70 Myr magma-poor margin SI at Passive margin

C-D Dinarides

60-70 Myr

Magma-rich margin

Intra-oceanic SI and obduction

Subduction initiation may be possible at passive margin under restricted condition:

- Spontaneous SI at passive margins is unlikely
- SI is also feasible for shortening of young oceanic basins.
- Successful SI furthermore requires:
 - **Crust/mantle decoupling** allowing for deformation of the ductile lower crust.
 - Efficient weakening mechanisms enabling failure of the lithospheric mantle.
- Promising sites for SI:
 - Magma poor hyper-extended passive margins exhumed and serpentinized mantle lithosphere, which facilitates strain localization and the formation of a proto-plate boundary.
 - Thermally weakened passive margin lithospheres, by mantle plume or baby plumes.

Auzemery et al., 2020. Global and Planetary change

Thank you

for

your attention

And by the way ...

I am looking for a job...

Thank you

for

your attention

