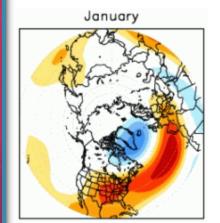
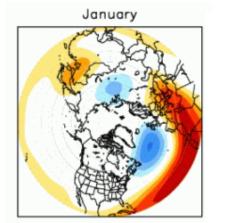

WINTER EURO-ALTANTIC CLIMATE MODES: FUTURE SCENARIOS FROM A CMIP6 MULTI-MODEL ENSEMBLE

Eleonora Cusinato¹, Angelo Rubino¹, Davide Zanchettin¹

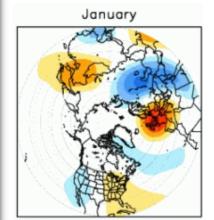
¹Universita'Ca' Foscari, Dip. Scienze Ambientali, Informatica e Statistica

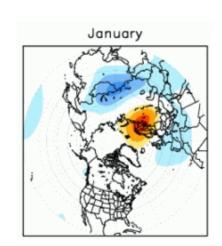


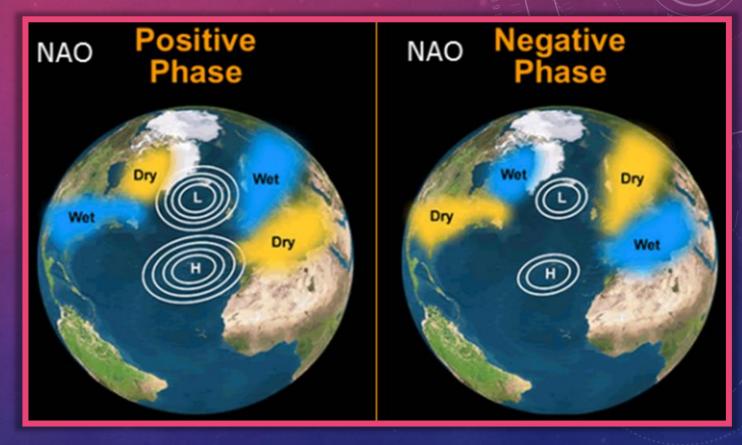


eleonora.cusinato@unive.it

North Atlantic Oscillation (NAO)


Eastern Atlantic pattern (EA)




East Atlantic Western Russian pattern (EAWR)

Scandinavian pattern (SCA)

1. INTRODUTION: EURO-ATLANTIC CLIMATE MODES

Red colours: <u>High Pressure</u>
Blue colours: <u>Low Pressure</u>

2. OBJECTIVE & RESEARCH QUESTIONS

To investigate the **presence of robust changes** in NAO, EA, EAWR and SCA in multi-model ensembles of **historical simulations** and simulations under the **ssp585 future scenarios** of anthropogenic forcing performed in the frame of the sixth phase of the Coupled Model Intercomparison Project (**CMIP6**, Eyring et al., 2016)

- How do CMIP6 climate models simulate observed features of winter NAO, EA, EAWR and SCA?
- * How are the simulated temporal, spectral and distributional properties of these modes affected by future global warming conditions?

3. METHODOLOGY: DEFINITION OF CLIMATE MODES

- Traditional approach: Rotated Empirical Orthogonal Functions (EOF) or Rotated Principal Component Analysis (PC);
- Caveats: Uncertainties, linked to the variable covariance structure of the spatio-temporal data, in a multi-model framework (e.g: Raible et al., 2014; Zanchettin et al., 2016);
- Alternative approach: Box-based method (Wallace and Gutzler, 1981; Stephenson et al., 2006): Difference of the 500hPa geopotential height anomalies between the centres of action the modes are characterized of. Index is obtained by a <u>linear combination</u> of anomalies in such centres of action.

$$Index = \beta_0 + \beta_n neg_n + \beta_n pos_n$$

$$NAO = -8.57 \times 10^{-5} - 0.015 \cdot neg1 + 0.017 \cdot pos1$$
$$EA = -0.005 \cdot neg1 - 0.009 \cdot neg2 + 0.054 \cdot pos1$$

$$EAWR = 2.857 \times 10^{-5} - 0.021 \cdot neg1 + 0.010 \cdot pos1 + 0.007 \cdot pos2$$

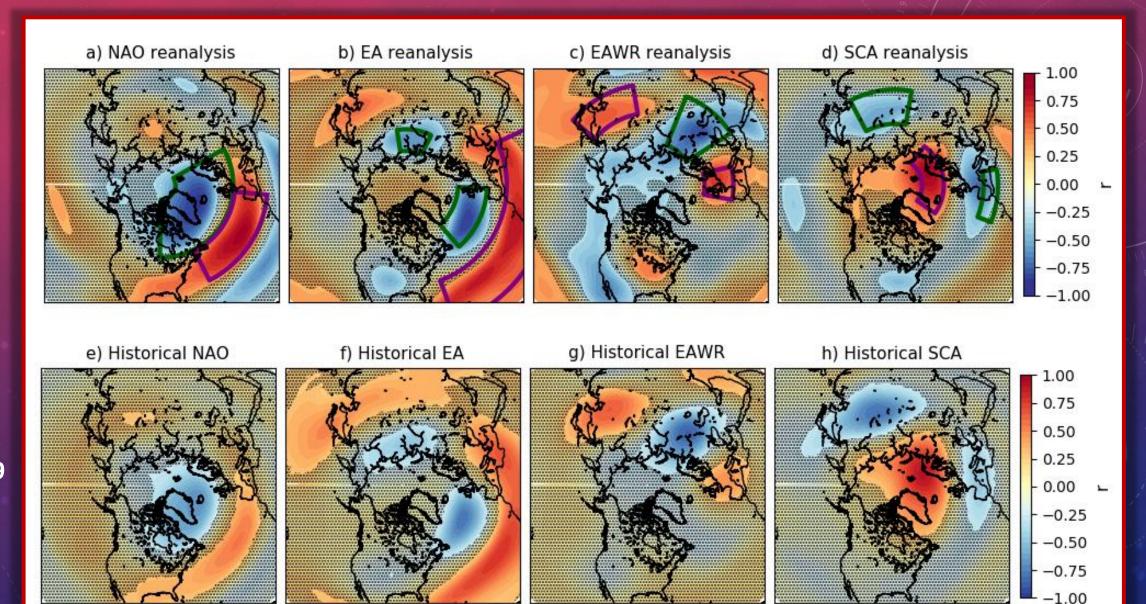
$$SCA = -5.714 \times 10^{-5} - 0.013 \cdot neg1 + 0.003 \cdot neg2 + 0.016 \cdot pos1$$

Z500 in winter (December-January-February) of:

- ERA –Interim reanalysis (= observations), 1980 2014;
- CMIP6 models, historical and ssp585

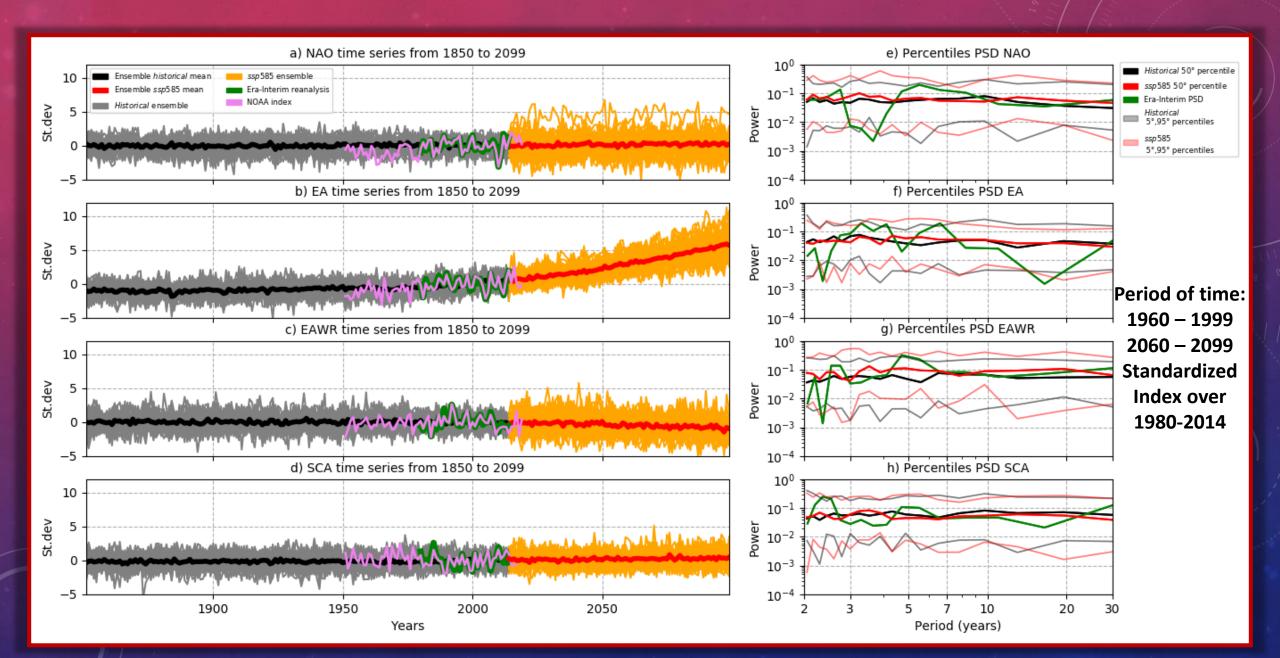
Univocal definition of the index across observations and models

Assumption: the centres of action do not change their spatial characteristics and relative weight in the *historical* and *ssp585* conditions.

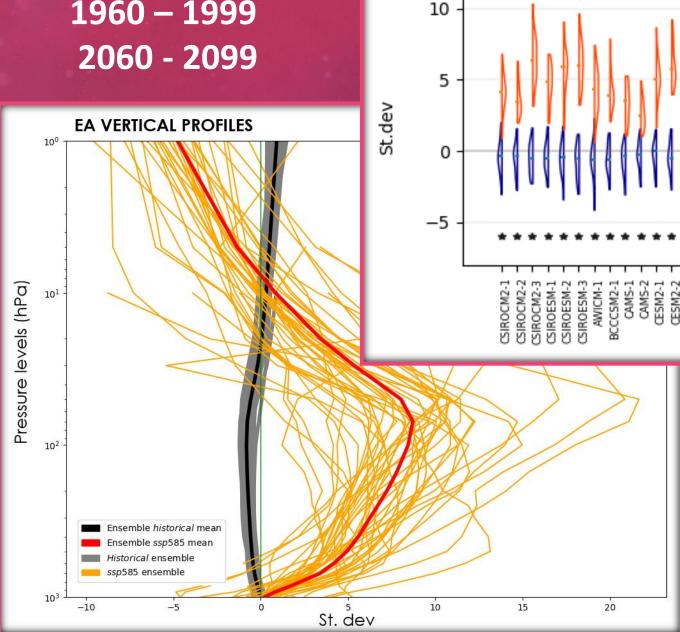

	Simulations (historical and ssp585)			l and ssp585)	
Institution	Model	r111p1f1	r211p1f1	r3(1p1f1	Reference
CSIRO (Australia)	ACCESS-CM2	X	Х	X	Bi et al. (2020)
	ACCESS-ESM1-5	X	X	X	Ziehn et al. (2020)
AWI (Germany)	AWI-CM-1-1-MR	X			Semmler et al. (2020)
BCC (Betjing, Asia)	BCC-CSM2-MR	X			Wu et al. (2019)
CAMS (China)	CAMS-CSM1	X	x		Rong et al. (2019)
NCAR (USA)	CESM2-WACCM	X	x	X	Danabasoglu et al. (20)
CMCC (Italy)	CMCC-CM-SR5	X			Cherchi et al. (2019)
CCCma (Canada Climate Center)	CanESM5	X	X	X	Swart et al. (2019)
EC-Earth-Consortium (Europe)	EC-Earth3	X			Massonnet et al. (2020
	EC-Earth3-Veg	X	x	X	Wyser et al. (2020)
CAS (China)	FGOALS-f3-L	X			He et al. (2019)
	FGOALS-g3	X	x	X	Li et al. (2020)
FIO (China)	FIO-ESM2	X	x	X	Song et al. (2019)
NOAA-GFDL (USA)	GFDL-ESM4	X			Dunne et al. (2020)
CCR-IITM (India)	IITM-ESM	X			Krishnan et al. (2019
INM (Russia)	INM-CM4-8	X			Volodin et al. (2018)
IPSL (France)	IPSL-CM6A-LR	X	X	X	Boucher et al. (2020)
MIROC (Japan)	MIROĈ6	X	x	X	Tatebe et al. (2019)
MPI (Germany)	MPI-ESM1-2-HR	X	x		Müller et al. (2018)
	MPI-ESM1-2-LR	X	x	X	Müller et al. (2018)
MRI (Japan)	MRI-ESM2-0	X			Yukimoto et al. (2019
NCC (Norway)	NorESM2-LM	X			Seland et al. (2020)
	NorESM2-MM	X			Seland et al. (2020)
AS-RCEC (Thatlandia)	TAIESM1	X			Lee et al. (2020)

3. CMIP6

- Output: winter monthly averaged Z500, nearsurface air temperature and precipitation;
- Historical simulations: 1851 2014;
- * ssp585 simulations: 2015-2099;
- Main analysis focuson 1960-1999 and2060-2099.


4. RESULTS – CMIP6 & OBSERVATIONS

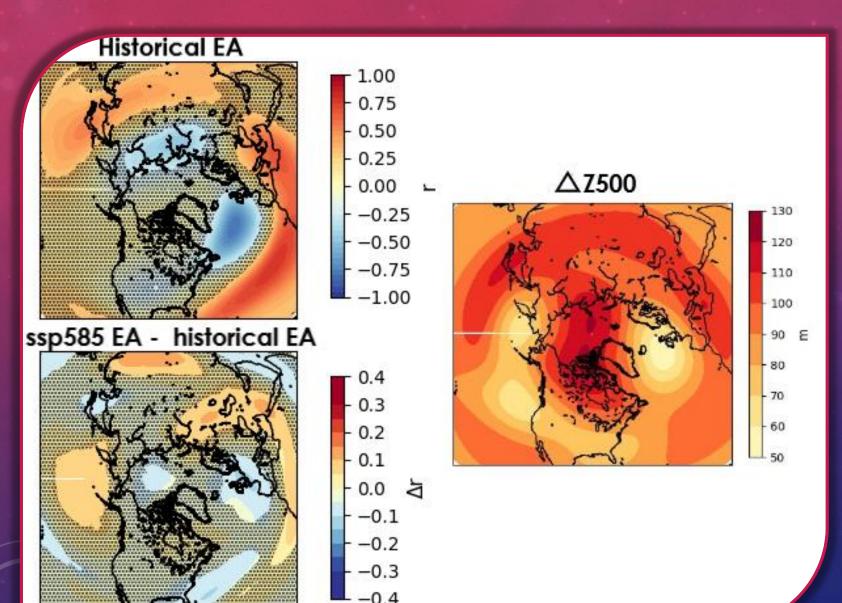
Reanalysis: 1980-2014



CMIP6: 1960-1999

4. RESULTS – TEMPORAL & SPECTRAL FEATURES

Period of time: 1960 - 1999


Mann Whitney U test is used to identified significant differences (p < 0.05) between the historical and ssp585 distributions;

historical

EΑ

Null hypothesis: no difference between the ensembles.

5. DISCUSSION

 \triangle = ssp585 - historical

- Weakening of interannual-todecadal variability;
- Ensemble-mean climatological changes in winter of the Z500 indicate a rise in the future vs historical;
- ❖ The rise of Z500 over the North

 Atlantic could explain the evolution towards a positive phase of EA.

ΔPr ΔT 17.5 - 20 - 15.0 0 nm/momth 12.5 10.0 7.5 -20 5.0 - 2.5 T, Historical EA Pr, Historical EA 0.8 0.6 0.6 -0.2-0.4-0.4T, ssp585 EA - historical EA Pr, ssp585 EA - Historical EA 0.45 0.30 0.2 0.15 0.00 -0.15-0.2-0.30-0.45

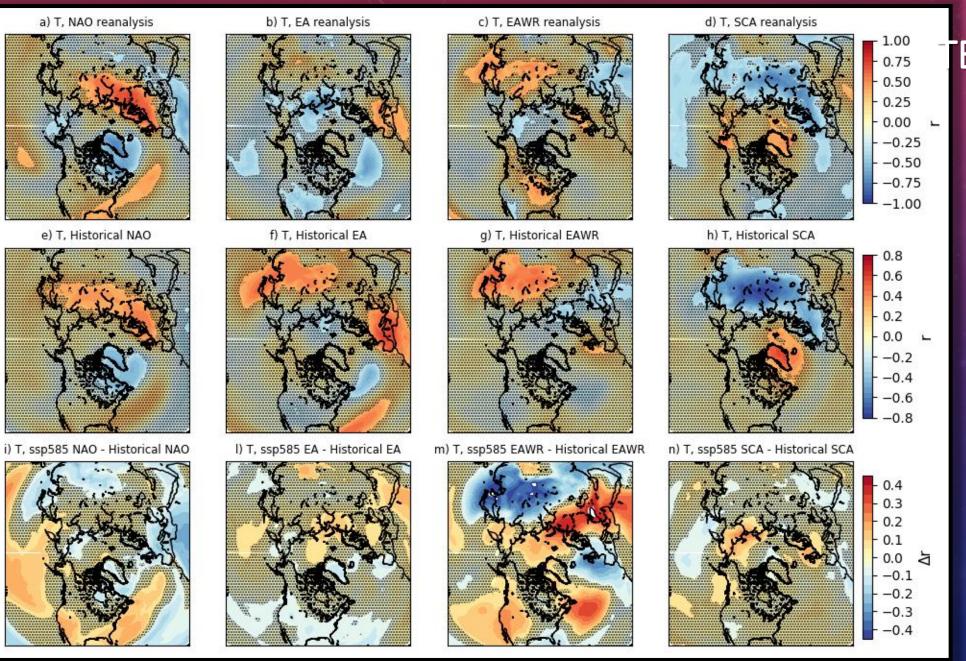
5. EURO-MEDITERRANEAN CLIMATE

- ❖ 2.5 5°C warming;
- Drying over Mediterranean between -10 and -5 mm/month;
- Wetting over Europe between +10 and +5 mm/month;
- EA strengthening may contribute to enhance European warming and Mediterranean drying.

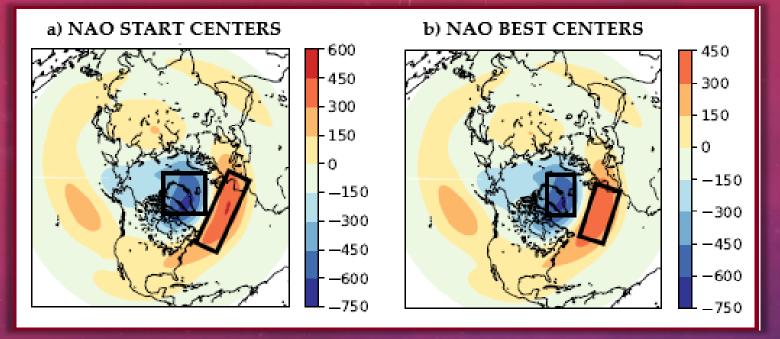
Historical: 1960 – 1999


ssp585: 2060 - 2099

6. CONCLUSIONS


- **Capability** of CMIP6 to robustly simulate the observed spatial patterns of all modes;
- NAO, EAWR and SCA do not change substantially in the future with respect to historical conditions;
- **EA evolves toward a persistent positive phase** in the mid-troposphere;
- Weakening of interannual-to-decadal variability for all modes;

Projections of climate modes under a future changing climate could aid in the physical explanation of projected climate changes in the Euro-Mediterranean region.


APPENDIX 1-INTERANNUAL VARIABILITY

APPENDIX 2— TEMPERATURE & INDICES

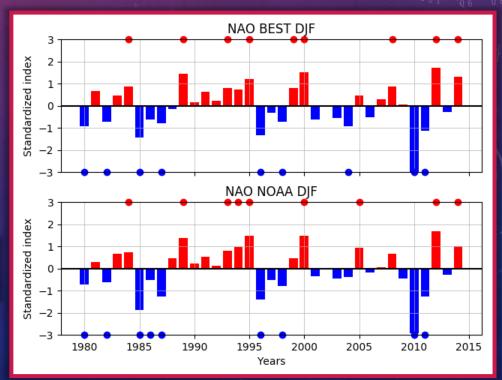
a) Pr, NAO reanalysis b) Pr, EA reanalysis c) Pr, EAWR reanalysis d) Pr, SCA reanalysis - 1.00 0.75 0.50 0.25 0.00 --0.25-0.50-0.75-1.00e) Pr, Historical NAO f) Pr, Historical EA g) Pr, Historical EAWR h) Pr, Historical SCA 0.8 0.6 0.4 0.2 0.0 -0.2i) Pr, ssp585 NAO - Historical NAO l) Pr, ssp585 EA - Historical EA m) Pr, ssp585 EAWR - Historical EAWR n) Pr, ssp585 SCA - Historical SCA 0.45 0.30 0.15 0.00 💆 -0.15-0.30-0.45

APPENDIX 2— PRECIPITATION & INDICES

2) Multi-linear regression model:

$$y = \beta_0 + \beta_1 \cdot x_1 + \beta_2 \cdot x_2 + ... + \beta_n \cdot x_n$$
 Z500 anomalies of the set of modified boxes (predictor x) and NOAA index (response variable y). Output: Indices time-series for each set of boxes.

1) Simple linear regression model:


 $y = \beta_0 + \beta_1 \cdot x_1$ Era-Int Z500 anomalies (response variable

y) and NOAA index (predictor x).

Output: Identification of start boxes;

$$NAO = \beta_0 + \beta_1 neg1 + \beta_2 pos1$$

Standardized index over 1980-2014

