VOLUMETRIC CHANGES OF EXTRUDED MUD ON MARS: REPORT FROM LABORATORY SIMULATIONS By, **Ondřej Krýza**^{1,2}, Petr Brož^{1,2}, Susan Conway³, Ernst Hauber⁴, Adriano Mazzini⁵, Mark Fox-Powell², Matt Sylvest², Manish Patel², Jan Raack⁶, Matt Balme², and Lionel Wilson⁷ # Mud volcanoes on Mars - Their existence is proposed over many areas on Mars - This is because many Martian features bear morphological and morphometrical similarities with terrestrial mud volcanoes (e.g., Skinner and Tanaka, 2007; Okubo, 2016, Komatsu et al., 2016) HiRISE and CTX images ### Mud volcanoes on Mars - Their existence is proposed over many areas on Mars - This is because many Martian features bear morphological and morphometrical similarities with terrestrial mud volcanoes (e.g., Skinner and Tanaka, 2007; Okubo, 2016, Komatsu et al., 2016) - However, such interpretation is not straightforward as similar-looking landforms could also result from igneous volcanism (Brož and Hauber, 2013; Brož et al., 2017) # Water is unstable on Mars! # The large Mars vacuum chamber at The Open University (head of the lab Dr. Manish Patel) 0.9 m in diameter and 1.8 m in length ### What do we learn? ### A formation of protective crust – ,mud tubes' and ,mud' inflation Exp. #16 – side view Time lapse of pahoehoe lava inflation © Volcano Video Hawaii Mud extruded on cold surfaces under low pressure behaves in several aspecsts as pahoehoe lava Details in Brož et al., 2020 (Nature Geoscience) # Experimental setup Cold mud, rapid p drop 20x speed up #### Slow p drop, warm mud 120x speed up #### More viscous mud 10x speed up EXP3 1:1/fast/cold #### Divergence of the 2D velocity field .. shows the rate of expansion (surface increment in time) $$\underbrace{\int_{m{C}} {f F} \cdot \hat{f n} \, ds}_{ ext{Flux integral}} = \iint_{m{R}} { m div} \, {f F} \, dA$$ #### Volume from the plane projections ImageJ analysis from the orthogonal planes vs analytical model From generalized ellipsoid based on the height of the structure Volume and surfaces (side view) Volume and surfaces (side view) #### Volume vs Time Visualization is invariant on absolute time = we can easily see diff for rapid/slow depressurization #### Volume vs Pressure ¹⁾ Higher viscosity = larger vol. change 2) Higher T = larger vol. change 3) Larger dP = larger vol. change #### Volume vs Pressure # Conceptual model for volumetric changes ### Differences in Putative Martian Mud Flows - Chryse (a,b,c), Adamas (d,e,f), SW of Cerberus Fossae (g,h,i) - Varying **p/T conditions** or viscosity during emplacement Brož et al. (Icarus, under review) Cuřín et al. (Icarus, under review) # Take home messages - Hard to distinguish between igneous and sedimentary volcanoes on Mars – both are theoretically possible - Mud behavior strongly depends on composition and low P conditions amplify differences in this behavior - The most significant is viscosity and rapid pressure drop which result in maximum volume increase - To quantify and theoretically predict morphology of mudflows we can apply simple lab experiments #### Thank you for your attention! kryza@ig.cas.cz