

Federico Pignalberi¹

Marco Maria Scuderi¹, Corentin Noël¹, Carolina Giorgetti¹, Chris Marone^{1,2} and Cristiano Collettini¹

¹Dipartimento di Scienze della Terra, La Sapienza Università di Roma, Rome, Italy

²Department of Geosciences, Pennsylvania State University, University Park, Pennsylvania, USA

federico.pignalberi@uniroma1.it

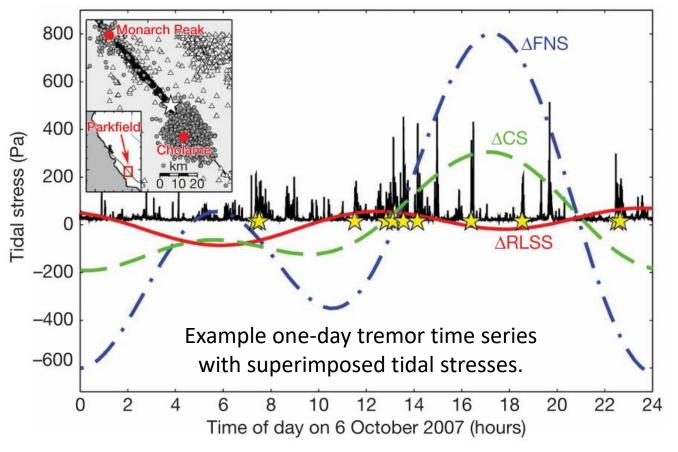
Vienna 23 – 27 May 2022

Established by the European Commission

Introduction

Stress perturbation can trigger earthquakes

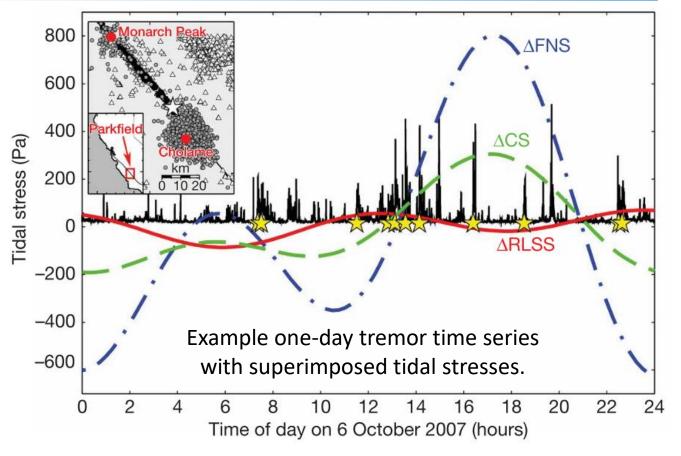
Slow-slip and tremors are also **sensitive to small stress variations**



Introduction

Stress perturbation can trigger earthquakes

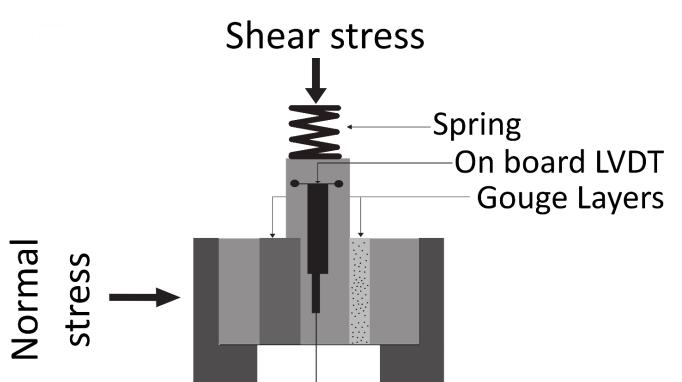
Slow-slip and tremors are also **sensitive to small stress variations**



Outstanding questions

- 1. Relation between normal stress oscillation and slip behavior?
- 2. Normal stress oscillation reduce fault strength?
- 3. Rate-and-state framework describe the laboratory results?

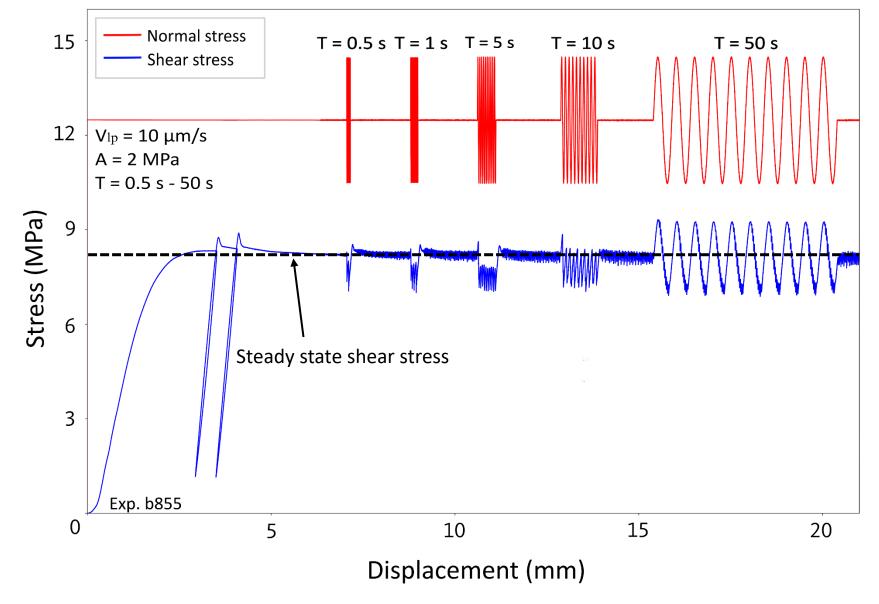
Experimental method



Experimental conditions

- Biaxial apparatus
- **Double Direct-Shear** (DDS) configuration
 - Using quartz gouge
 - Under controlled 100% humidity conditions
- Critically stiffness condition K'/Kc' ~ 1.3

Experimental method



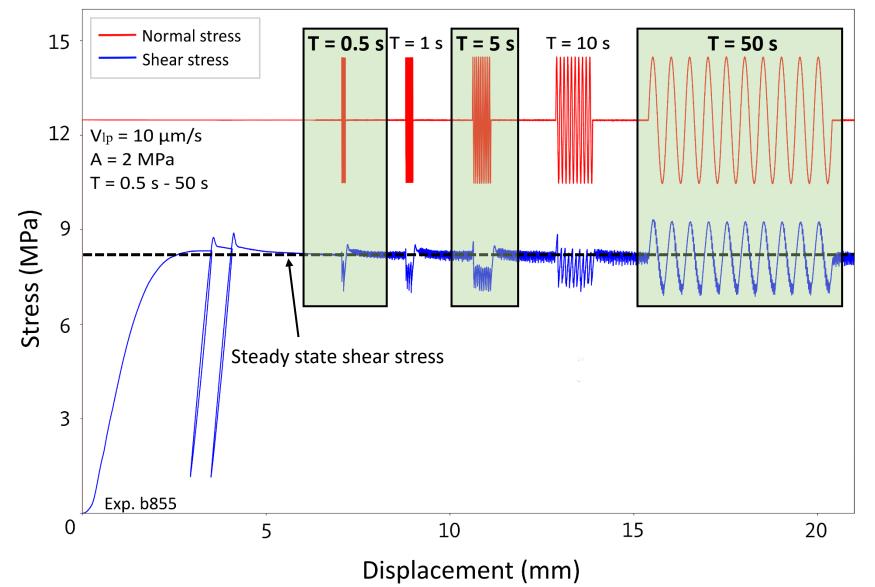
Experimental conditions

- Mean normal stress $\sigma_n^{mean} = 12.5 \text{ MPa}$
- Loading rate $V_{lp} = 10 \mu m/s$
- Oscillation periods
 T = 0.5 s to 50 s
- Oscillation amplitudes

 A = 0.5 MPa, 1 MPa

 and 2 MPa

Experimental method



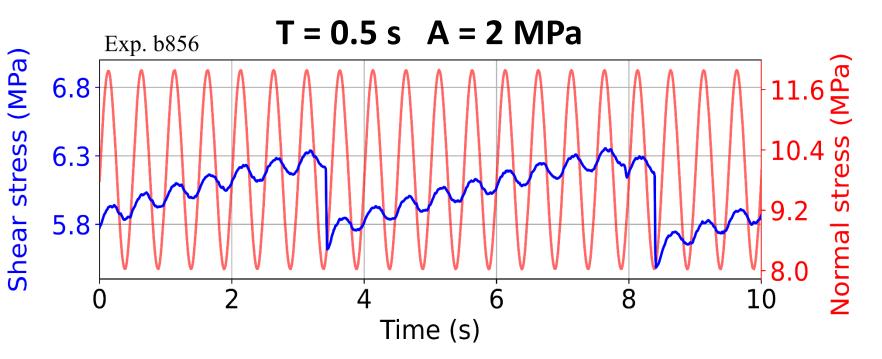
Experimental conditions

- Mean normal stress $\sigma_n^{\text{mean}} = 12.5 \text{ MPa}$
- Loading rate
 V_{Ip} = 10 μm/s
- Oscillation periods
 T = 0.5 s to 50 s
- Oscillation amplitudes

 A = 0.5 MPa, 1 MPa

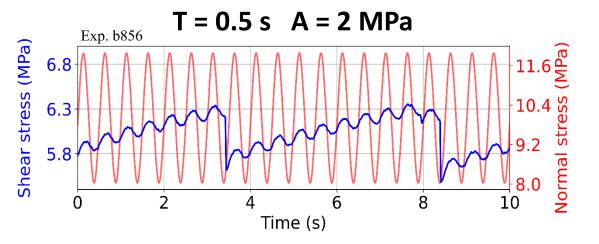
 and 2 MPa

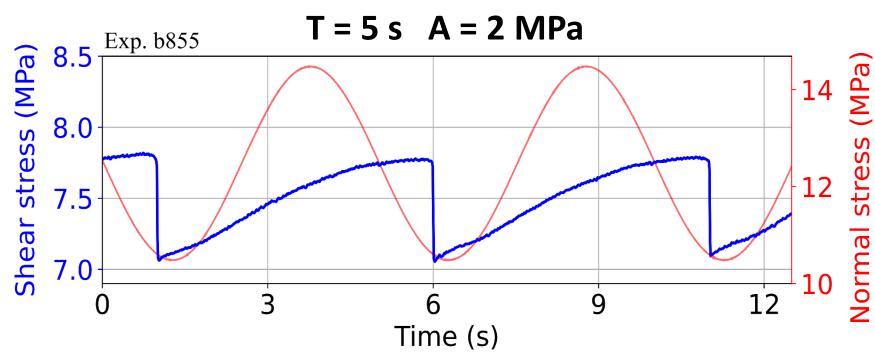
Mechanical data



T = 0.5 s: In phase response superimposed to a shear stress accumulation

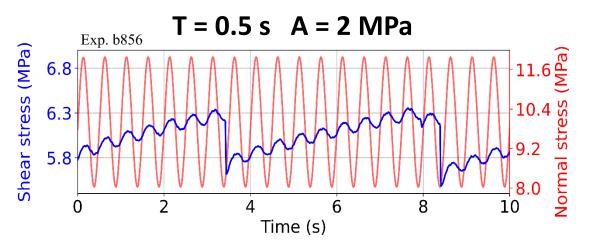
Mechanical data

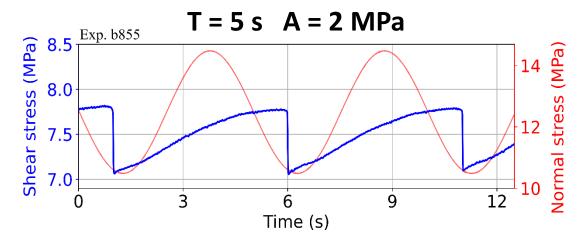


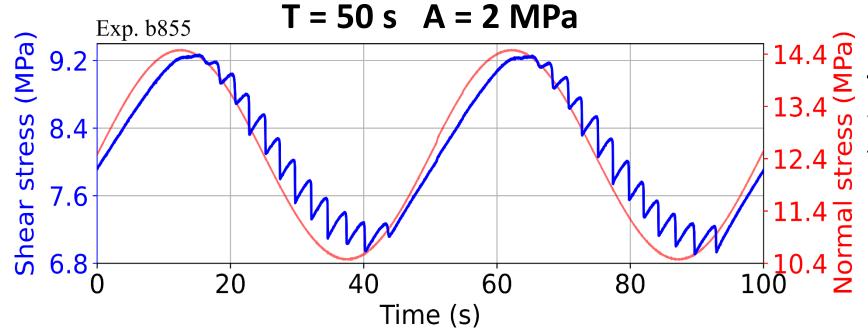


T = 5 s: Regular stick slip behavior out of phase with the oscillation

Mechanical data

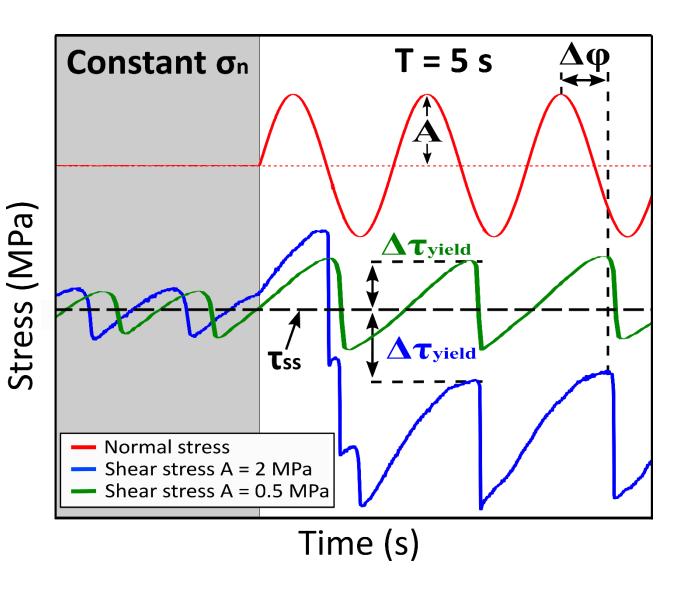






T = 50 s: complete modulation with instabilities only during the normal stress decreasing

Frictional response

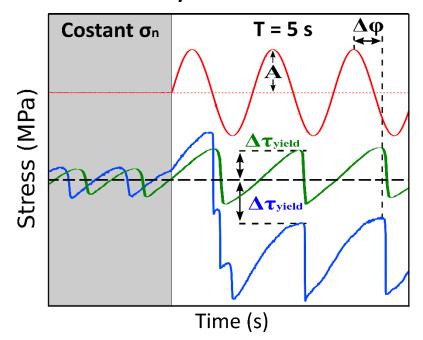


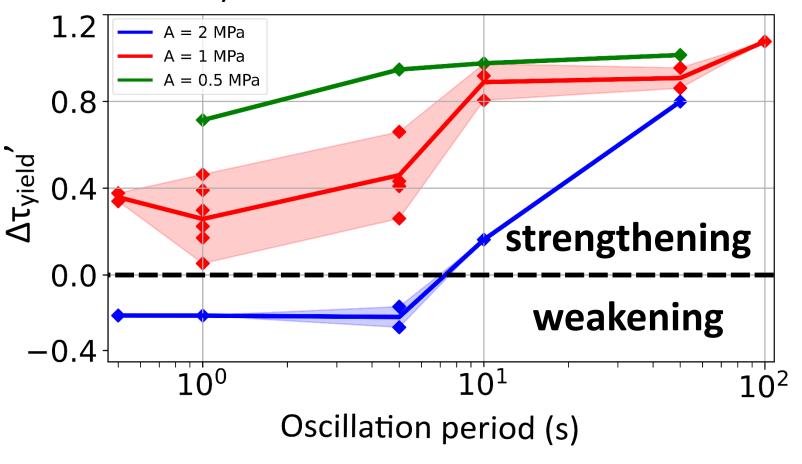
Two parameters to quantify the frictional response:

- 1. $\Delta \tau_{yield}$, the variation in peak yield strength.
- 2. $\Delta oldsymbol{arphi}$, the phase lag.

Frictional response

$\Delta \tau_{\text{yield}}' < 0$ dynamic weakening, while $\Delta \tau_{\text{yield}}' > 0$ dynamic strengthening



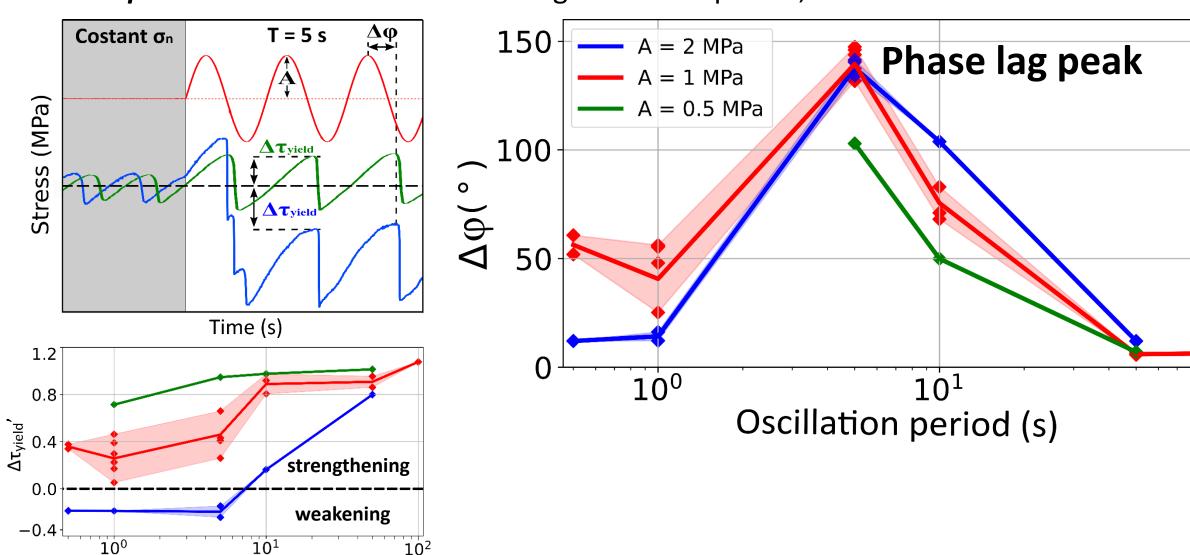


Oscillation period (s)

Frictional response

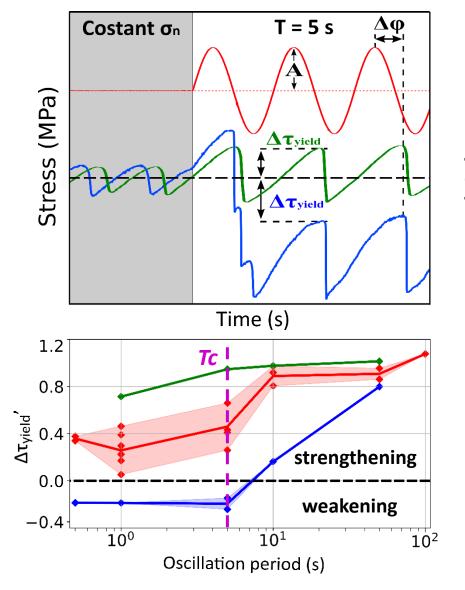
 10^2

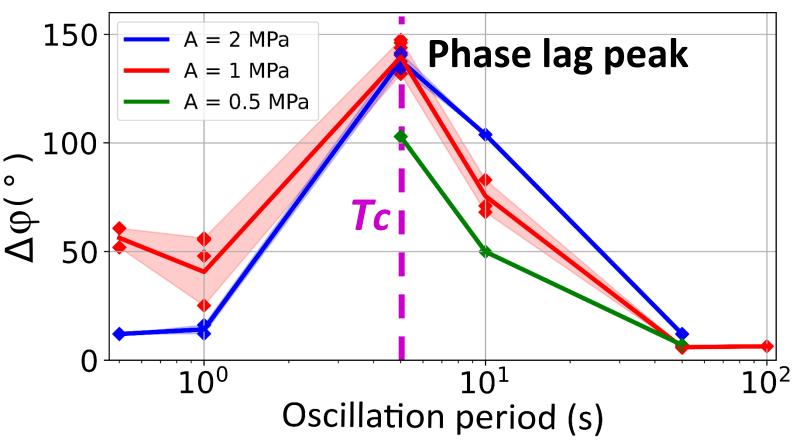
 $\Delta \varphi$ is close to zero at short and long oscillation period, and is maximum at T = 5 s



Frictional response

 $\Delta \varphi$ is close to zero at short and long oscillation period, and is maximum at T = 5 s

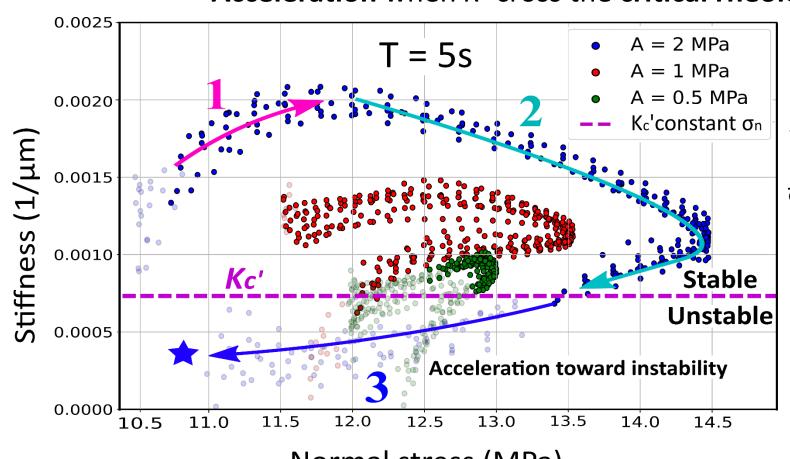


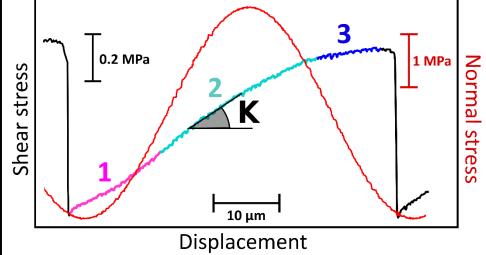


T = 5 s correspond to the critical period, Tc

Stiffness evolution

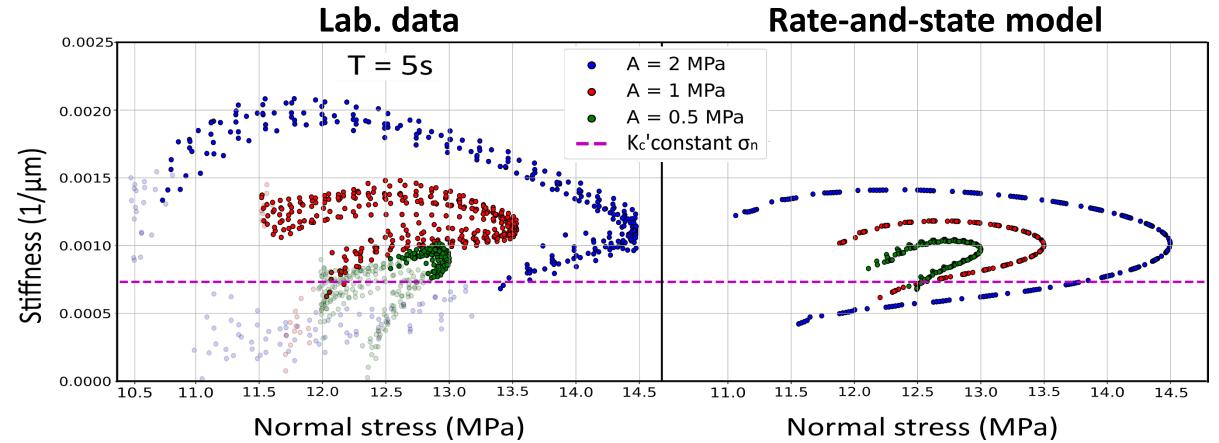
Acceleration when K' cross the critical rheological stiffness (Kc')



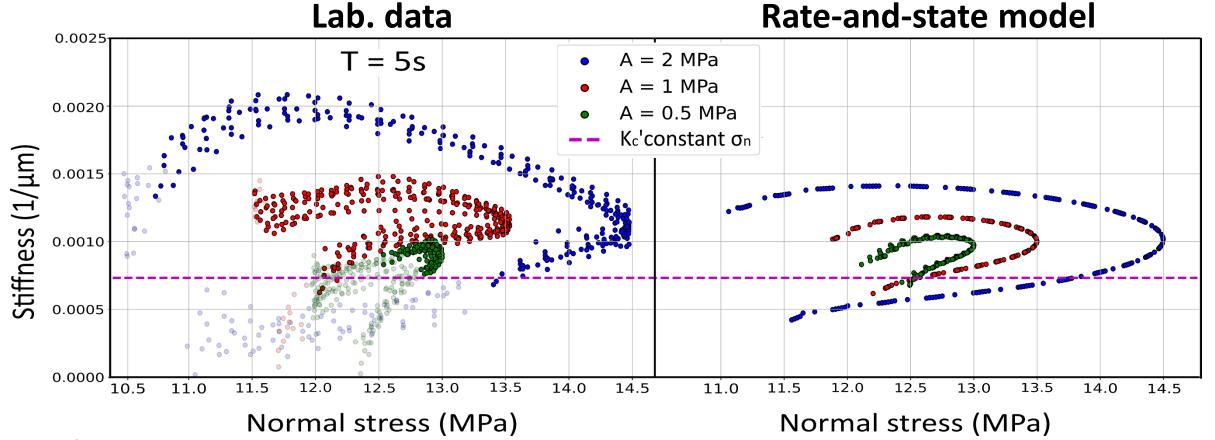


Normal stress (MPa)

Stiffness evolution



Take home message



Conclusions

- The fault slip behavior is controlled by oscillation amplitude and period.
- Low oscillation amplitude strengthen the fault. High oscillation amplitudes at short periods $(T \le 5 s)$ destabilize the fault.
- Rate-and-state modeling is consistent with the laboratory data.

Thank you for your attention

If you have any questions I'm happy to discuss it email address: federico.pignalberi@uniroma1.it

Established by the European Commission

Rate-and-state model

Friction costitutive law

$$\mu(\theta, V) = \mu_0 + a \ln \left(\frac{V}{V_0}\right) + b \ln \left(\frac{V_0 \theta}{D_c}\right)$$

Extended Dieterich evolution law

$$\frac{\partial \theta}{\partial t} = 1 - \ln \left(\frac{V\theta}{D_c} \right) - \alpha \frac{\theta}{b \sigma_n} \frac{\partial \theta}{\partial t}$$

Extended Ruina evolution law

$$\frac{\partial \theta}{\partial t} = \frac{V\theta}{D_c} \ln \left(\frac{V\theta}{D_c} \right) - \alpha \frac{\theta}{b \sigma_n} \frac{\partial \theta}{\partial t}$$

With
$$\alpha = \frac{\Delta \tau_{\alpha} / \sigma_{n}^{step}}{\ln(\sigma_{n}^{step} / \sigma_{n}^{0})}$$

Elastic interaction

$$\frac{\partial \mu}{\partial t} = K' (V_{lp} - V_{f})$$

Critical oscillation period

$$T_c = 2\pi \sqrt{\frac{a}{(b-a)}} \frac{D_c}{V}$$

Time necessary for shear strength to evolve to a new steady level following a single step in normal stress

Critical rheological stiffness

$$K_c = \frac{(b-a)\sigma_n}{D_c}$$

Normalized parameters

$$\Delta \tau' = \frac{\Delta \tau}{2A\mu_{ss}}$$

$$\Delta \tau_{yield}' = \frac{\Delta \tau_{yield}}{A\mu_{ss}}$$

$$\Delta \varphi = \frac{t_{\sigma_{n}}^{\max} - t_{\tau}^{\max}}{T} \times 360$$

