

EGU Presentation

Stable water isotopes reveal the effects of land use on ecohydrological partitioning in a drought-sensitive mixed land-use catchment

Presenter: Jessica Landgraf¹

Dörthe Tetzlaff 1,2,3

Chris Soulsby 1,3,4

- ¹ Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
- ² Humboldt Universität zu Berlin, Berlin, Germany
- 3 University of Aberdeen, Aberdeen, Scotland
- ⁴ Technische Universität Berlin, Berlin, Germany

Effects of different land use on ecohydrological partitioning

- Transpiration >> runoff from world's rivers (Good et al, 2015)
- Trade offs between blue and green water fluxes
- Evapotranspiration (ET) sensitive to land use (Douinot et al. 2019)
- Land use changes shift patterns of ET, infiltration, water retention (*Balist et al.*, 2022)
- Important considering climate change shift in precipitation amount and pattern, increasing atmospheric demand for ET, prolonged drought years

Conclusions

Demnitzer Millcreek Catchment

Precipitation ~548 mm Temperature ~9.7°C (1990 – 2020, DWD 2021) PET 650 – 700 mm a⁻¹ (Smith et al. 2020)

8 sites - 4 different land use / soil units

- Forest,
- Grassland,
- Arable (e.g. Crops)
- Alternative arable (e.g. Syntropic)

Hydroclimatic conditions

- Precipitation ~545 mm
- PET ~874 mm
- Volumetric water content (VWC) lowest at forests; wetter in humus-rich surface horizons
- Arable land uses highest total VWC; higher wetness in subsoil

Dual isotope plot with LMWL & 4 land use types with regression lines

- Most data points
 scatter in close
 proximity to the local
 meteoric water line
 (LMWL)
 - Syntropic site regression widest deviation from the LMWL
- Regressions do not deviate much from LMWL → Low evaporative signal

Variability of soil δ^2H (a) and Ic-excess (b) over the season

(a) δ^2 H enriched until August, then depleted and strongly depleted in December (b) Lc-excess highly depleted in June and August \rightarrow strongest evaporative singal

Conclusions

 Stable water isotopes useful tool to investigate spatial-temporal differences in water partitioning

- Alternative arable sites did not differ substantially from conventional sites
 - early stages since management started (2019/2021)
 - Long-term observations needed to assess land use change influences

Conclusions

 Stable water isotopes useful tool to investigate spatial-temporal differences in water partitioning

- Alternative arable sites did not differ substantially from conventional sites
 - early stages since management started (2019/2021)
 - Long-term observations needed to assess land use change influences

Thank you very much for your attention!