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● Simple neural net
● Dropout layer 
● 7 fold CV in blocks of years
● lm for comparison 

Statistical learner
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> 90% quantile for the current calendar day Data: ERA5 JJA, 1950-2020, EURO-CORDEX domain
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How does 
this work?

What does the model do?



PCA for binary fields (!)
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Regular PCA (“EOFs”):      given data X, find vectors U such that |X - UUTX|2 is minimal
           → minimize Gauss deviance, solution: eigenvectors of XTX

Landgraf and Lee (2020): assume exponential family, compute natural parameters θ 
→  iteratively search a projection θUUT that minimizes the relevant deviance

Binary data:  Bernoulli distribution, θ = log(  p / (  1 - p )  )

10 rotated “logistic EOFs” for European heatwaves 



Modelling heatwaves in the reduced space

Predictand: 10 rotated logistic PCs of heatwaves
Predictors: 20 PCs of soil moisture and geopotential at 1000, 800, 500, 300 and 100 hPa

● 10 + 20 × 10 = 210 parameters
● Least squares fit
● R2=0.46

Multivariate linear regression

● One hidden layer with 40 nodes
→ (20+1) × 40 + (40+1) × 10
     = 1250  parameters

● ReLu activation, 20% dropout
● Optimized with Adam
● R2=0.75

Simple feed forward neural net

vs.

Observed and modelled heatwave PC # 6 in summer 2019 



Modelling heatwaves in the reduced space

Predictand: 10 rotated logistic PCs of heatwaves
Predictors: 20 PCs of soil moisture and geopotential at 1000, 800, 500, 300 and 100 hPa

Observed, PCA reduced, and simulated heatwaves on 2019-07-26



Variable importance

Models are not bad, but how do they identify heatwaves? 
Linear model: just look at coefficients (?)

What to do for the neural net? The coefficients tell us 
nothing ! Mean absolute regression coefficients

→ is Φ
800 

the most important predictor?

Idea (Shapley 1952, Lipovetsky and Conklin 2001): Split up the overall R2 as follows: 

→ train all possible 26 models, compare their R2 to get the  Shapley values!



Variable importance: Shapley values

Percentage contributions to the overall model 
performance R2 for the neural net Recursive Shapley “interactions” (Hausken 2001) 

for the neural net



Variable importance: Shapley values
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Summary

● There is a PCA for binary variables → reduced version of any binary event you want !

● A simple neural net can explain 75% of the reduced heatwave variability 

● Shapley values and interactions reveal how much can be learned from each predictor, lm and 
neural net are not so different after all  

● It seems that the model has learned Φ
800

 - Φ
1000

∼ T
900

 (hydrostatic relation)
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Heatwave definition and basic statistics


