

Mobility of Fluopyram in soils under saturated flow conditions

Mariana Vasconcelos Barroca and Gilboa Arye

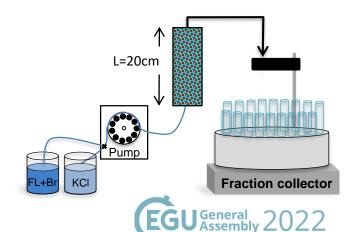
(marianavbarroca@hotmail.com), (aryeg@bgu.ac.il)

French Associates Institute for Agriculture and Biotechnology of Drylands, Ben Gurion University, Israel

Acknowledgments

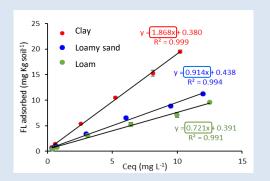
Objective

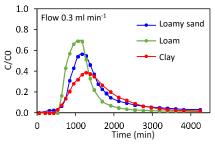
Quantify the adsorption and transport of the nematicide Fluopyram (FL) in 3 soils with different texture under increasing water flows

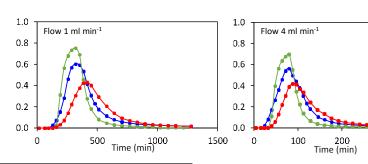

Material and Methods

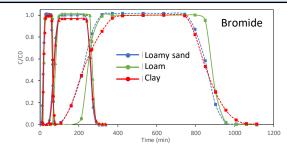
- Equilibrium adsorption isotherm by batch method
- Flowthrough experiments under saturated water flow
- Chemical analysis by HPLC

Saile


20112							
Soil	Sand	Silt	Clay	${ ho_b}^{ m a}$	pH _{w1:1} b	EC _{w1:1} b	OM
2011		(%)		g cm ⁻³	-	dS m ⁻¹	%
Loamy sand (30°46′ N; 35°16′E)	82	14	4	1.52	7.8	3.5	0.7
Loam (31°18' N; 34°31' E)	48	40	12	1.26	7.6	0.67	1.7
Clay (32°23′ N; 35°2′ E)	27	34	39	1.16	7.5	0.89	4.1


Results and Discussion


Equilibrium adsorption isotherms


Soils	K_d	K_{OM}	
	L Kg ⁻¹	L kg ⁻¹	
Loamy sand	0.914	129.1	
Loam	0.721	41.7	
Clay	1.868	45.9	

Fluopyram mobility

Soils _	0	Pulse	Applied	FL	Bromide
	Ų	duration	Mass	recovery	
	ml min ⁻¹	min	mg	%	%
Loamy sand	0.3	53	1.5	89	102
	1	16	1.5	92	100
	4	4	1.6	91	101
Loam	0.3	53	1.6	87	101
	1	16	1.5	88	101
	4	4	1.6	81	99
Clay	0.3	53	1.5	80	100
	1	16	1.7	78	97
	4	4	1.4	78	97

FL-BTCs:

- In agreement with the adsorption isotherm.
- Larger retention time in clay.

300

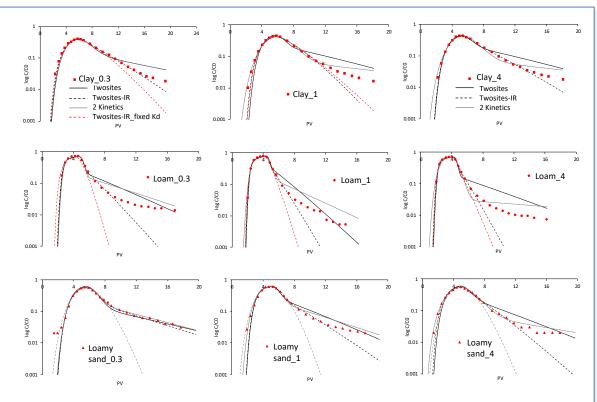
400

 Sharp increase in concentration after pulse input and long tailing during leaching phase

Physical equilibrium:

 Bromide, used as a conservative tracer, exhibited symmetrical curves in all fluxes, with an average of 100% Br recovered

Results and Discussion


Sorption models

2 models evaluated:

- Two-sites model (TSM)
- Two-kinetic sites model
- When irreversibility (IR) is assumed, both models underestimated the tailing of BTCs; showing that instead of irreversible desorption, the long-term leaching behavior is due to a very slow desorption kinetics.

The results and models implied on:

- Rapid adsorption
- Slow kinetic release

Conclusions:

- Transport of FL is influenced by soil texture and slightly affected by flow rate
- FL has higher adsorption on clay, followed by loamy sand and loam soil
- Both models, TSM and 2 kinetic sites, using 2 adsorption sites can adequately describe the measured FL-BTCs