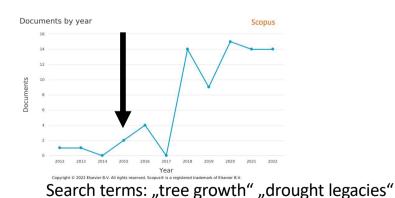
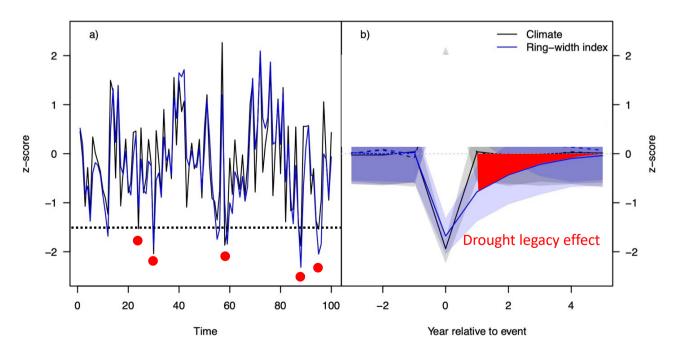
Legacy effects in radial tree growth are rarely significant when accounting for inherent biological memory

Stefan Klesse, F. Babst, M.E.K. Evans, A. Hurley, C. Pappas, R.L. Peters

What are legacy effects? How are they calculated?

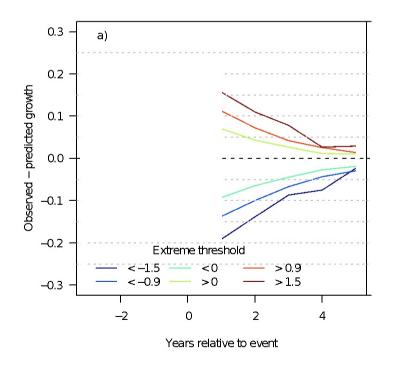
- Anderegg et al. (2015, Science): droughts negatively impact radial tree growth for up to four years
- → coined the term "legacy effects"
- Legacy effects = residuals of regression between tree-ring and climate time series, aggregated relative to a set of extreme events





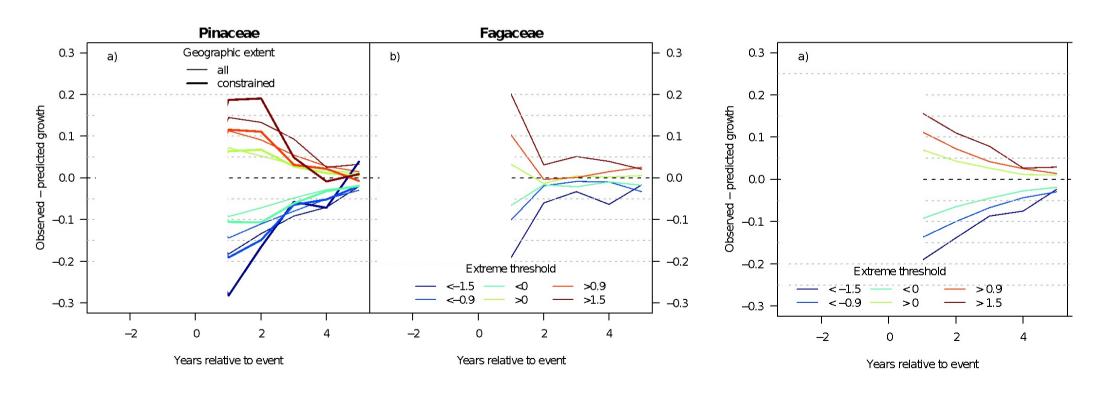
Drought legacy effects re-visited (~literature synthesis)

- · Legacy effects scale with the chosen extreme threshold
- They are rather symmetric, i.e. similar in magnitude and shape after wet and dry extremes (Jiang et al., 2019 NatComm)
- Legacy effects scale with SD of chronologies (Gazol et al., 2020, JoE)
- Legacy effects are stronger at sites that have a higher correlation with climate (Anderegg et al., 2015, Gazol et al. 2020; Huang et al. 2018, GCB)



Drought legacy effects re-visited (~literature synthesis)

- Legacy effects are stronger in Pinaceae compared to Fagaceae (Anderegg et al. 2015)
- → through stronger cross-correlation with climate and higher auto-correlation compared to Fagaceae

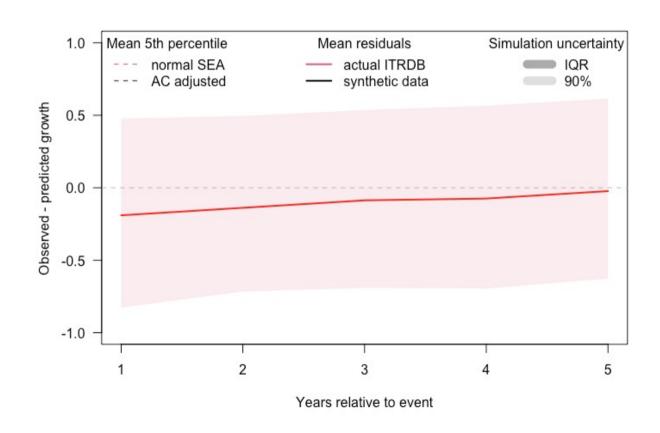


Individual legacy effects are very noisy!

 Statistical model explains only 8% of the variance of lag-1 effects (using climate-growth cross correlation and RWI auto-correlation)

Create white noise time series with n=100

→ add red noise to match observed crosscorrelation and auto-correlation structure of treering time series; repeat for all 2081 ITRDB sites

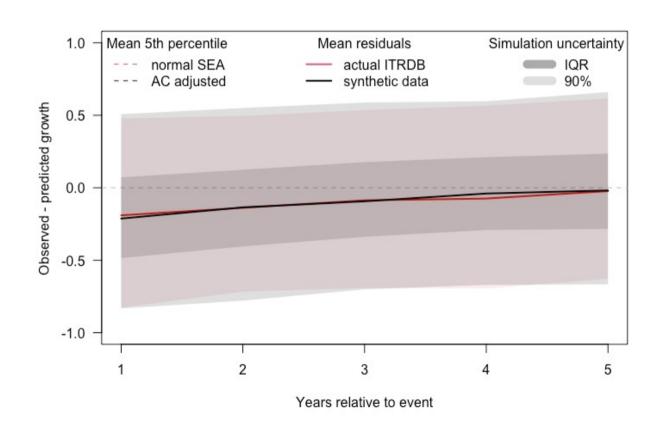


Legacy effects are predictable based on long time-series !

 Statistical model explains only 8% of the variance of lag-1 effects (using climate-growth cross correlation and RWI auto-correlation)

Create white noise time series with n=100

→ add red noise to match observed crosscorrelation and auto-correlation structure of treering time series; repeat for all 2081 ITRDB sites



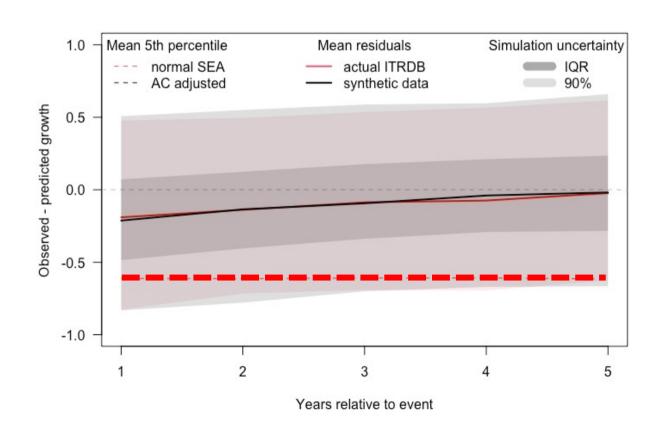
Legacy effects are predictable based on long time-series !

 Statistical model explains only 8% of the variance of lag-1 effects (using climate-growth cross correlation and RWI auto-correlation)

Create white noise time series with n=100

→ add red noise to match observed crosscorrelation and auto-correlation structure of treering time series; repeat for all 2081 ITRDB sites

Classic SEA: 16% of lag-1 effects are significantly different from random ← INVALID ASSUMPTION



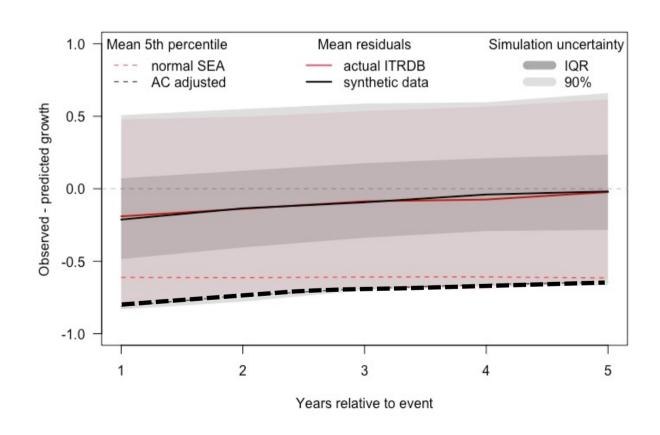
Legacy effects are predictable based on long time-series !

 Statistical model explains only 8% of the variance of lag-1 effects (using climate-growth cross correlation and RWI auto-correlation)

Create white noise time series with n=100

→ add red noise to match observed crosscorrelation and auto-correlation structure of treering time series; repeat for all 2081 ITRDB sites

RIGHT ASSUMPTION: residuals are not random! 5% is on par with the adjusted null hypothesis



The way forward Pt1: Re-adjust expectations

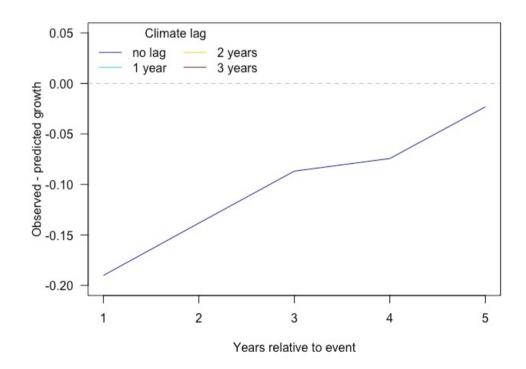
• Use synthetic data to adjust the null hypothesis, adjust the expectations based on long time-series information!

- Strong consequences for interpretation of other extreme event analyses (Lloret)
- Lower recovery and resilience values to be expected with series that correlate stronger to drought index, have higher AC, and higher year-to-year variability (SD).
- Incomplete recovery (line of full resilience) has to be the rule if we account for auto-correlation

The way forward Pt2: Change the growth model

 Use distributed lag models (e.g., antecedent stochastic modeling, Ogle et al., 2015) to a priori account for autocorrelation

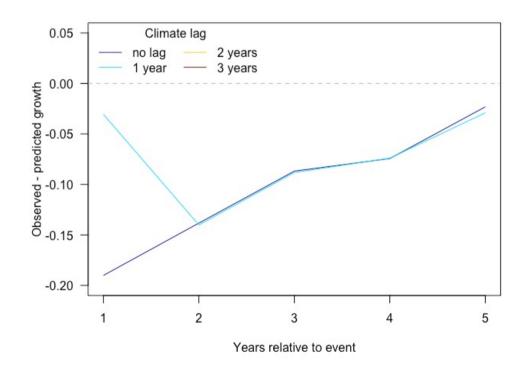
RW~ climate t



The way forward Pt2: change the growth model

 Use distributed lag models (e.g., antecedent stochastic modeling, Ogle et al., 2015) to a priori account for autocorrelation

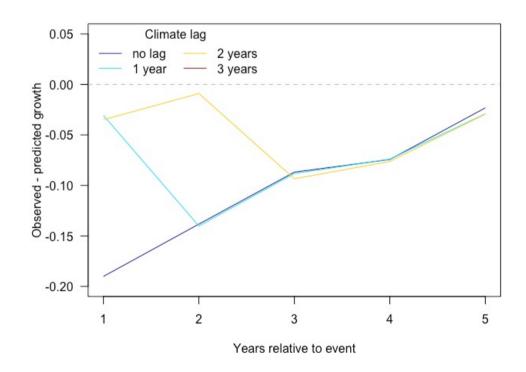
• RW~ climate t + climate t-1



The way forward Pt2: change the growth model

 Use distributed lag models (e.g., antecedent stochastic modeling, Ogle et al., 2015) to a priori account for autocorrelation

RW~ climate t + climate t-1 + climate t-2

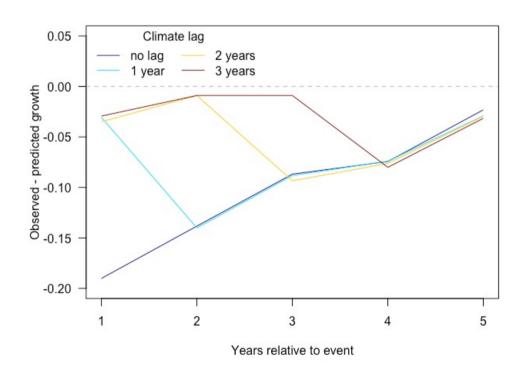


The way forward Pt2: change the growth model

• Use **distributed lag models** (e.g., antecedent stochastic modeling, Ogle et al., 2015) to *a priori* account for autocorrelation

RW~ climate t + climate t-1 + climate t-2 + climate t-3

Legacy effects disappear!



Conclusion

to paraphrase Körner (2003):

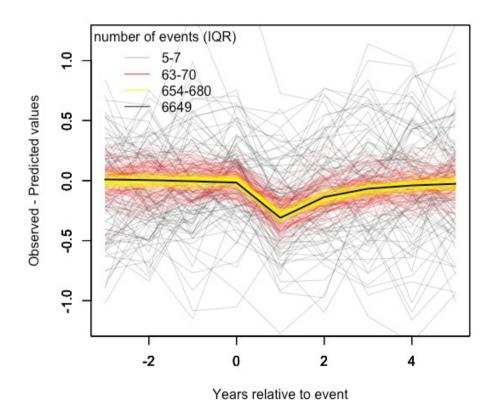
The application of **invalid statistical assumptions** and **overly simplistic models** to estimate expected tree growth has given rise to a new word for "biological memory".

The term "legacy effect" and its **interpretation as a physiological crisis** that is **Only** induced by extreme droughts **is misguided**.

Thank you for your attention!

Replication is key!

- Noise is common to extreme event analyses with low N (replications).
- We need about 500 observations (number of events per site * number of sites; yellow lines) to get a robust mean legacy effect estimation.



Replication is key!

If n is sufficiently high then:

• The contribution of rho (cross-correlation) and phi (AC1) on lag-1 effects is equal!

• Double the amount of auto-correlation (or cross-correlation)

→ double the amount of lag-1 effects

