

Selection of flash flood models in data-scarce regions like Jordan

by **Clara Hohmann**, Christina Maus, Dörte Ziegler, Sameh Kantoush, and Qasem Abdelal

Flash flood risk assessment in Jordan

- Arid region, but severe flash floods
- Very limited data availability, e.g. runoff (data-scarcity)
- Very steep and complex topography (e.g. in Petra)

Hydrological models are needed for effective planning of adaptation measures (climate and land use changes)

→ Which models can be applied in Jordan?

Model selection process

		o o	4 7 §
Objective of model application (Model complexity, knowledge of processes, scale)	Data requirements (availability and quality)	Social aspects like user knowledge and modelling group experience	Resources, effort, code availability and licensing (e.g. open source)
[e.g. Beven and Young (2013), Ghonchepour et al. (2021)]	[Beven (2011), Ghonchepour et al. (2019)]	[Addor and Melsen (2019), Horton et al. (2021)]	[Beven (2011), Ghonchepour et al. (2019)]

Model selection process in data and water scarce regions for flash flood risk assessment

		60	4 7 §
Objective	Data requirements	User knowledge	Resources
 Existing gaps in process understanding of arid areas Not all dominant processes are included in models which are mainly developed for humid areas 	 → Data scarcity and quality is a dominant issue → Limited runoff data for calibration 	 → Modelling group experience is limited → Fewer resources for model development 	 → Financial resources for software are restricted → Cost-benefit even more important in developing countries

Our model selection for flash flood risk assessment for water and data scare regions

We use a multi model approach including

- **HEC-HMS** (with SCS-CN approach, widely used in Jordan)
- HBV (semi-distributed, conceptual model, used for flash flood forecasting)
- Rainfall-Runoff-Inundation Model RRI (2D-model capable of simultaneously simulating runoff and flood inundation, good performance for flood risk in wadis systems)

References

- Addor, N.; Melsen, L.A. (2019): Legacy, Rather Than Adequacy, Drives the Selection of Hydrological Models.
 WRR. 55, 378–390
- Beven, K. (2011): Rainfall-runoff modelling: The primer, *John Wiley & Sons*.
- Beven, K.; Young, P. (2013): A guide to good practice in modeling semantics for authors and referees. WRR. 49, 5092–5098
- Horton, P; Schaefli, B.; Kauzlaric, M. (2021): Why do we have so many different hydrological models? A review based on the case of Switzerland. Wiley Interdiscip. Rev.-Water, e1574
- Ghonchepour, D.; Sadoddin, A.; Bahremand, A.; Croke, B.; Jakeman, A.; Salmanmahiny, A. (2021): A
 methodological framework for the hydrological model selection process in water resource management projects.
 Natural Resource Modeling 34 (3)