

How does North Atlantic Oscillation modify summer urban heat load in Zagreb (Croatia)?

<u>Irena Nimac^{1,2}</u>, Ivana Herceg Bulić³, Maja Žuvela-Aloise⁴, Matej Žgela³

HrZZ Hrvatska zaklada za znanost

- ¹ Croatian Meteorological and Hydrological Service
- ² Wegener Center für Klima und Globalen Wandel
- ³ Department of Geophysics, Faculty of Science, University of Zagreb
 - ⁴ Zentralanstalt für Meteorologie und Geodynamik

Motivation

- Urban sprawl and development → increase in urban population (UN 2019)
- Artificial materials in construction → alteration in surface energy balance and water balance
 - Urban heat island (UHI)
 - Urban floods
- UHI affected by factors and processes on different spatial and temporal scales → interactions and feedbacks within the climate system
 - Characteristics of the city (size, shape, land-use/cover)
 - Climate zone, vicinity of the mountain, sea
 - Synoptic systems
 - Heat waves, droughts, North-Atlantic Oscillation (NAO), El-Nino Southern Oscillation (ENSO)

(source: https://dozr.com/blog/urban-heat-island)

In this research

- Importance of surface intitial conditions for the development of an extreme event
- Response of the urban heat load to different combinations (in terms of preceding and concurrent component):
 - winter and summer NAO
 - dry/wet conditions in late winter-spring and summer season
- The results published in the paper:

Nimac, I., Herceg-Bulić, I., Žuvela-Aloise, M., & Žgela, M. (2022). Impact of North Atlantic Oscillation and drought conditions on summer urban heat load - a case study for Zagreb. International Journal of Climatology, 1– 18. https://doi.org/10.1002/joc.7507

Data

- Time period: 1949–2019
- Hurrel (2003) PC-based NAO index for winter (DJF) wNAO and summer (JJA) – sNAO season
- Drought conditions defined by standardized precipitation evapotranspiration index (SPEI) for summer – AugSPEI3 and late winter-spring – MaySPEI5 season based on the data measurements from meteorological station Zagreb-Maksimir
- Heat load represented as number of days with maximum air temperature equal or higher than 25 °C, i.e. summer days (Tx25)

Methods

- Correlation analysis for different combinations of preceding and concurrent NAO (SPEI) conditions in regard to Tx25 based on the station data
- MUKLIMO_3 urban climate model (dynamical component) + cuboid method (statistical component) = spatio-temporal investigation
- Land surface temperature (LST) Landsat-8 satellite data for representative situations

Correlation analysis

- Significant correlation between wNAO and both winter and summer SPEI mainly due to significant correlation with Tmax
- Significant correlation between Tx25 and sNAO
- Even stronger correlation after including wNAO in multiple linear regression
- Similar results for SPEI analysis, but with stronger correlation

		sNAO			
	DJF	MAM	JFMAM	JJA	JJA
Tmax	0.40	0.37	0.46	0.24	-0.33
Tmin	0.17	0.27	0.27	0.20	-0.18
Prec	-0.40	-0.18	-0.28	-0.17	0.21
SPEI	-0.40	-0.26	-0.35	-0.25	0.24

Tx25 (days)	NAO		SPEI	
	LR	R	LR	R
Preceding	78.0+3.0*x _p	0.19	77.7-6.0*x _p	-0.37
Concurrent	78.7-5.1*x _c	-0.32	76.0-6.4*x _c	-0.48
Both	78.7+3.5*x _p -5.5*x _c	0.39	76.1-3.8*x _p -5.4*x _c	0.53

Statistically significant values at 1% (5%) significance level are written in bold (italic).

NAO/SPEI effect (station data)

- Four NAO/SPEI composites
- NAO experiments
 - The largest (lowest) Tx25
 number for Exp.NAO_PN
 (Exp.NAO_NP) combination
- SPEI experiments
 - The largest (lowest) Tx25
 number for Exp.SPEI_DD
 (Exp.SPEI_WW)
 combination

NAO effect (modelling)

- Changes in Tx25
 amplitude the strongest increase (decrease) for PN (NP) situation
- Changes in Tx25 spatial gradient – decrease for PN combination
- Somewhat different response in forest areas compared to other vegetation classes, except for PN situation

SPEI effect (modelling)

- Analogously to NAO analysis
- Changes in Tx25 amplitude

 the strongest increase
 (decrease) for DD (WW)
 situation
- Changes in Tx25 spatial gradient – decrease for DD combination
- Similarly, somewhat different response for forests

LST analysis (satellite data)

- Similar field to heat load distribution obtained by modelling

 the highest values in the densely built-up areas, lower values along slopes of Medvednica mountain, in the forests, parks and water areas
- Stronger spatial gradient for situations when preceding conditions were wet compared to ones preceded by dry conditions

Conclusion

- Significant effect of North-Atlantic oscillation and drought conditions on the urban heat island
- The role of the soil moisture as a link between winter NAO and summer heat load situation
- Importance of slower components of the climate system for the development of an extreme event
- Cooling efficiency of vegetation depends on the drought conditions
- Preparation of irrigation system when seasonal forecast points to conditions drier than average

Mitigation of impacts of extreme weather situations

- Short-term measures (e.g. planing of energy and water consumption and demand)
- → Long-term measures (e.g. implementation of green infrastructure, planning of irrigation system)

Nimac, I., Herceg-Bulić, I., Žuvela-Aloise, M., & Žgela, M. (2022) Impact of North Atlantic Oscillation and drought conditions on summer urban heat load - a case study for Zagreb. *International Journal of Climatology*, 1– 18. https://doi.org/10.1002/joc.7507

