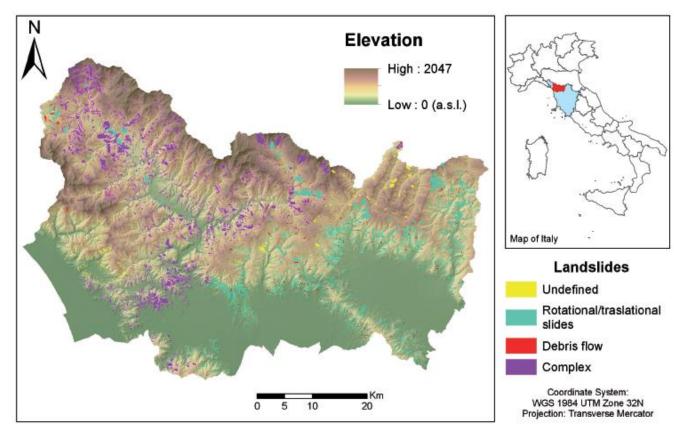


Landslide susceptibility assessment including a set of novel explanatory variables: soil sealing, and multi-criteria geological parameterization



Introduction

Landslide susceptibility maps are based on the spatial distribution of a set of selected predisposing factors

The identification of new parameters to be used as input data is a promising field of research in susceptibility studies as it may contribute to enhance the results

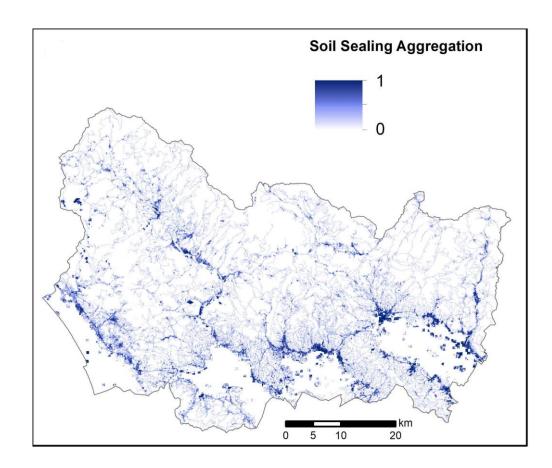
- Lucca, Prato and Pistoia province,
 Northern Tuscany (Italy), 3100 km²
- Italian national inventory of landslides (IFFI): about 7000 landslide polygons.
- Model Used: Random Forest

Soil Sealing Map

WHAT IS SOIL SEALING?

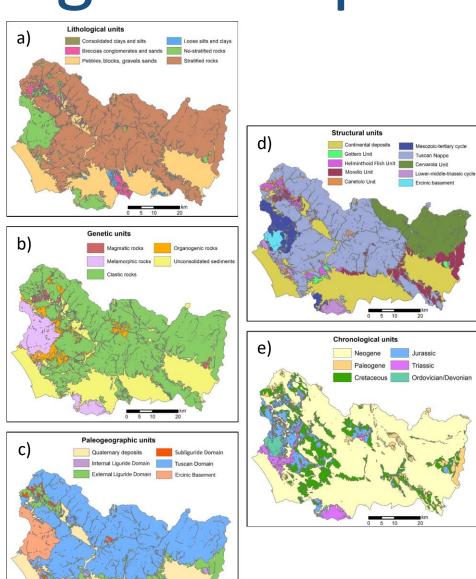
Destruction or covering of soil by (partially) impermeable materials:

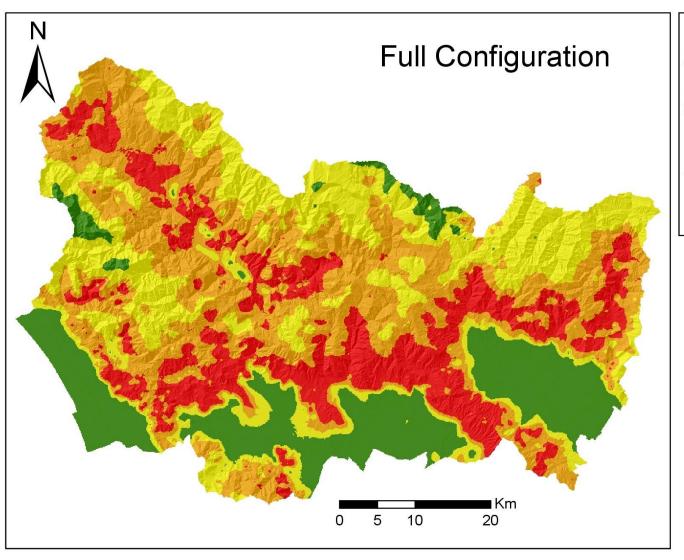
- infrastructures
- buildings
- services...

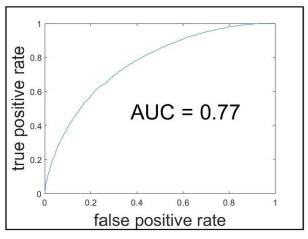

NATION-WIDE MONITORING PROGRAM

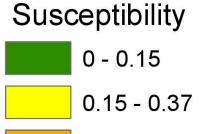
- By remote sensing techniques
- Specifically conceived and calibrated
- Binary map (sealed/not sealed)
- 10 m resolution raster
- Yearly updates
- Open access

Soil sealing rate in Italy: 8 m²/s 4 football fields a day

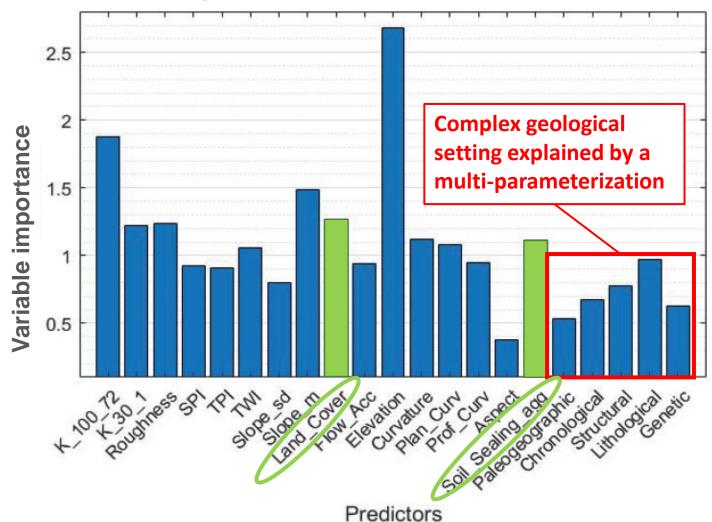

A new variable: % of sealed soil in each spatial unit (Luti et al., 2020)

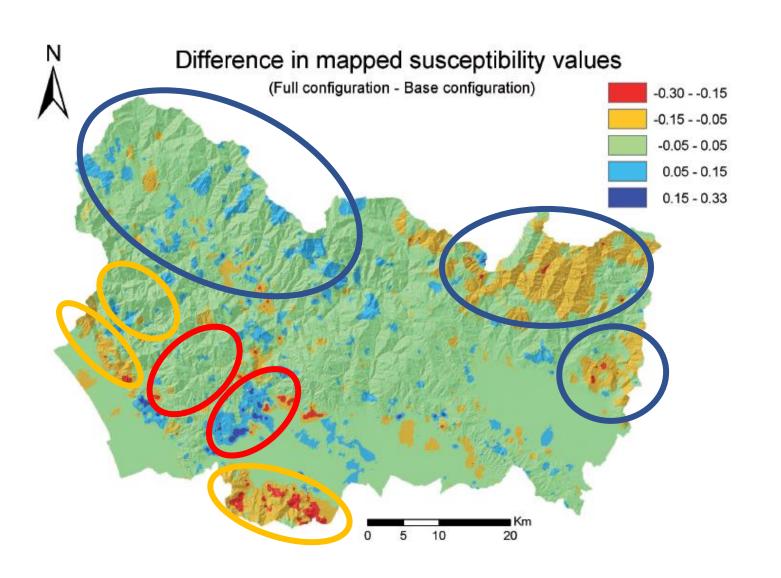

Multi-Parametric Geological Maps


From 1:10.000 scale digital geological maps with 194 lithostratigraphic units (Segoni et al., 2020)


- a) Lithological units: prevailing lithology
- **b) Genetic units:** genetic process: magmatic rocks, metamorphic rocks, sedimentary-clastic rocks, organogenic rocks, soils
- c) Paleogeographic units: highlight differences on mineralogical or textural characteristics according to the environment of deposition
- **d) Structural units:** accounts for tectonic evolution and tectonic stress: thrusting, folding, faulting, uplifting...
- **e)** Chronological units: age of deposition; accounting for the degree of weathering and the exposition to tectonic stress

Results and discussion




Results and discussion

	Name	Description	
Base Configuration	K_100_72	Return time of a 100 mm rainfall event in 72 hours	
	K_30_1	Return time of a 30 mm rainfall event in 1 hour	
	Roughness	Standard deviation of Elevation	
	SPI	Stream Power Index	
	TPI	Topographic Position Index	
	TWI	Topographic Wetness Index	
	Slope_sd	Standard deviation of Slope gradient	2
	Slope_m	Slope gradient	Full Configuration
	Land_Cover	Land Cover from CORINE 2018	l i
	Flow_Acc	Flow Accumulation	fig
	Elevation	Elevation	رَ
	Curvature	Total Curvature	=
	Plan_Curv	Planar Curvature	ū
	Prof_Curv	Profile Curvature	
	Aspect	Aspect	
	Soil_Sealing_agg	Soil Sealing	
	Paleogeographic	Paleogeographic units	
	Chronological	Chronological units	
	Structural	Structural units	
	Lithological	Lithological units	
	Genetic	Genetic units	

Out-of-Bag Permuted Predictor Importance Estimates

Results and discussion

Same lithology, different Structural units

Same lithology,
different
Paleogeographic units

Same lithology, different Chronological units

Conclusion

SOIL SEALING IN LSM:

- No redundancy with CORINE database (updated yearly; different spatial, temporal and thematic accuracy)
- It incorporates information about road network (joint use with CORINE database is advisable; road network parameters can be discarded)

GEOLOGY IN LSM:

- Geology is a complex information that extends beyond lithology
- Prediction can be increased with a multi-criteria geological parameterization
- The expertise of a geologist is important in landslides susceptibility studies

Thank you for your attention!

For more informations:

nicola.nocentini@unifi.it

Segoni et al., 2021

DOI: 10.4408/IJEGE.2021-01.S-19

QR-Code for EGU22 Abstract

NEW EXPLANATORY VARIABLES TO IMPROVE LANDSLIDE SUSCEPTIBILITY MAPPING: TESTING THE EFFECTIVENESS OF SOIL SEALING INFORMATION AND MULTI-CRITERIA GEOLOGICAL PARAMETERIZATION

Samuele SEGONI(*), Nicola NOCENTINI(*), Ascanio ROSI(*), Tania LUTI(*), Giulio PAPPAFICO(**), Michele MUNAFÒ(***), Nicola CASAGLI(*) & Filippo CATANI(****)

(*) University of Firenze - Department of Earth Sciences - Florence, Italy
(**) University of Urbino - Department of Pure and Applied Sciences - Urbino, Italy
(***) ISPRA - Italian Institute for Environmental Protection and Research - Rome, Italy
(****) University of Padova - Department of Geosciences Padova, Italy
Corresponding author: samuele.segoni@unifi.it