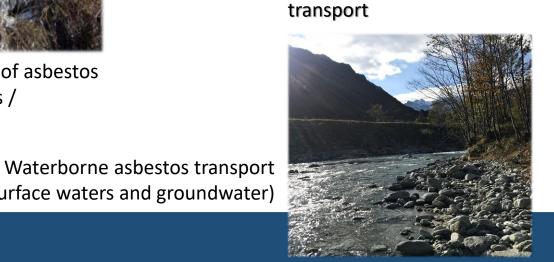


Extensive characterization of waterborne mineral fibres and study of their possible migration to air in naturally occurring asbestos (NOA) rich settings.

<u>C. Avataneo</u>^{1,2}, S. Capella^{1,2}, M. Lasagna¹, D. A. De Luca¹, E. Belluso^{1,2,3} c.avataneo@unito.it

¹Dept. of Earth Sciences, University of Torino (Italy) ²"G. Scansetti" Interdepartmental Center, University of Torino (Italy)

³Geosciences and Earth Resources (IGG) of the National Research Council of Italy (CNR), Operational Unit of Torino (Italy)


Asbestos circulation in the environment

Weathering and erosion of asbestos rich-rocks and sediments / mine tailing deposits

Nebulization & Asbestos in dust evaporation Deposition Asbestos in Waterborne solid matrix asbestos Runoff &

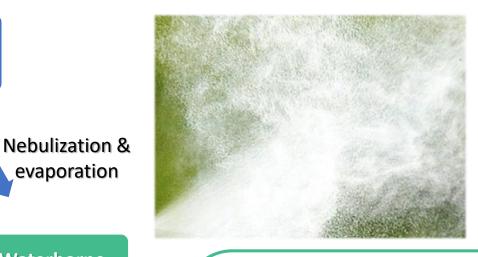
(surface waters and groundwater)

evaporation

Waterborne

asbestos

Asbestos circulation in the environment


Airborne asbestos

Weathering and erosion of asbestos rich-rocks and sediments / mine tailing deposits

Asbestos in dust Deposition Asbestos in solid matrix Runoff & transport

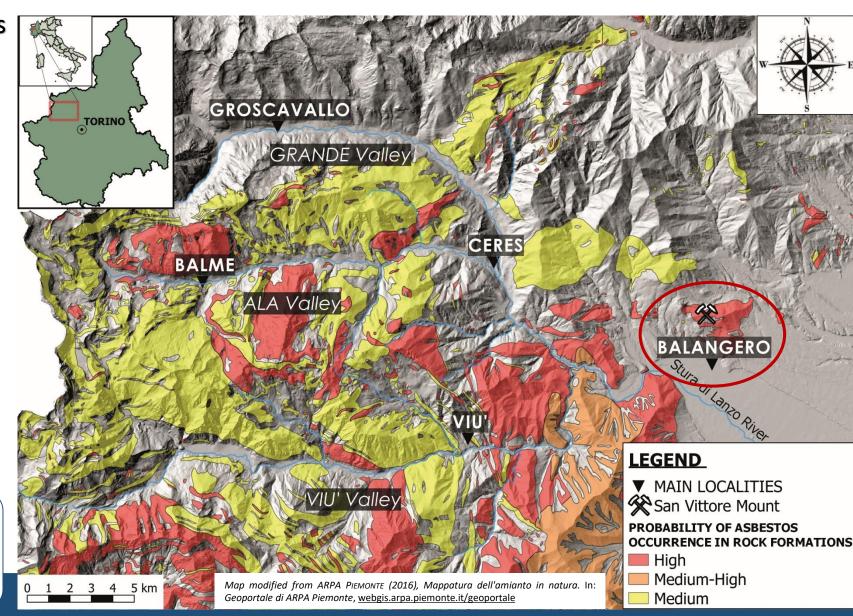
Waterborne asbestos transport (surface waters and groundwater)

Non-conventional exposure ways related to the use of contaminated water:

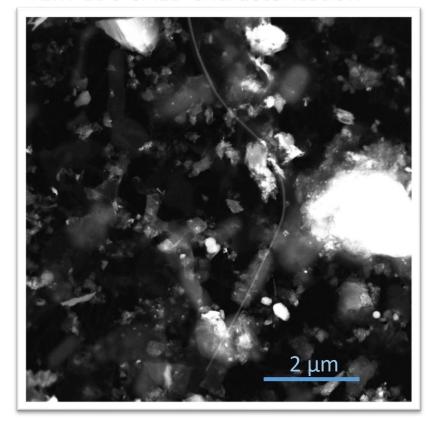
- > in agriculture/industry secondary source of airborne asbestos
- as supply for tap water ingestion

Study area and sampling campaigns

Water sampled in Lanzo Valleys and Balangero Plain (NW Alps, Italy).


I sampling campaign in 2020 (dry period)
→ 22 samples in total.

II sampling campaign in 2021 (rainy period) → 32 samples in total (greater sampling density in the Balangero plain).


Sampling points:

- surface waters from Stura river or its tributaries;
- groundwater from springs, wells and piezometers (sampled in static mode).

Avataneo C. et al. (2021). Groundwater Asbestos pollution from Naturally Occurring Asbestos (NOA): a preliminary study on the Lanzo Valleys and Balangero Plain area, NW Italy. Italian Journal of Engineering Geology and Environment, 1.

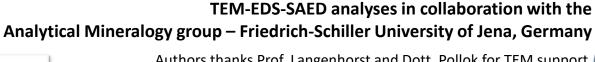
TEM-EDS-SAED characterization

TEM-EDS-SAED analyses in collaboration with the Analytical Mineralogy group – Friedrich-Schiller University of Jena, Germany

Authors thanks Prof. Langenhorst and Dott. Pollok for TEM support.

GROUNDWATER

ALL FIBRES SIZE*	Length [μm]	Width [μm]
Max	13.23	0.4
Min	0.35	0.01
Average	2.74	0.08


FIBRES CONCENTRATION*	Concentration [f/L]
All mineral particles	27.2·10 ⁶
Chrysotile + fibrous tremolite/actinolite	$6.7 \cdot 10^6$

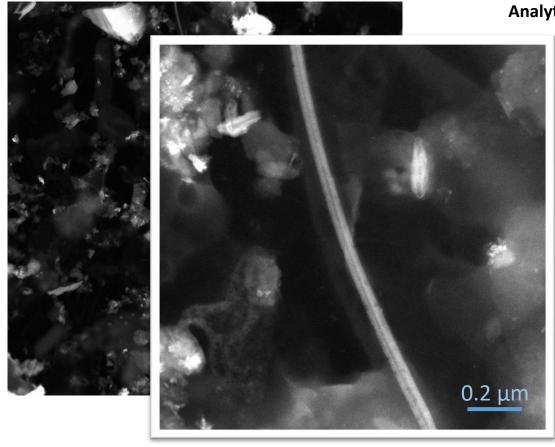
^{*}All fibres are considered, despite their length.

STEM image of a chrysotile fibre

Avataneo C. et al. (2021). Groundwater Asbestos pollution from Naturally Occurring Asbestos (NOA): a preliminary study on the Lanzo Valleys and Balangero Plain area, NW Italy. Italian Journal of Engineering Geology and Environment, 1.

TEM-EDS-SAED characterization

Authors thanks Prof. Langenhorst and Dott. Pollok for TEM support.



GROUNDWATER

ALL FIBRES SIZE*	Length [µm]	Width [μm]
Max	13.23	0.4
Min	0.35	0.01
Average	2.74	0.08

FIBRES CONCENTRATION*	Concentration [f/L]
All mineral particles	27.2·10 ⁶
Chrysotile + fibrous tremolite/actinolite	6.7·10 ⁶

^{*}All fibres are considered, despite their length.

STEM image of a chrysotile fibre

Avataneo C. et al. (2021). Groundwater Asbestos pollution from Naturally Occurring Asbestos (NOA): a preliminary study on the Lanzo Valleys and Balangero Plain area, NW Italy. Italian Journal of Engineering Geology and Environment, 1.

TEM-EDS-SAED characterization

TEM-EDS-SAED analyses in collaboration with the Analytical Mineralogy group – Friedrich-Schiller University of Jena, Germany

Authors thanks Prof. Langenhorst and Dott. Pollok for TEM support.

GROUNDWATER

ALL FIBRES SIZE*	Length [μm]	Width [μm]
Max	13.23	0.4
Min	0.35	0.01
Average 2.74		0.08

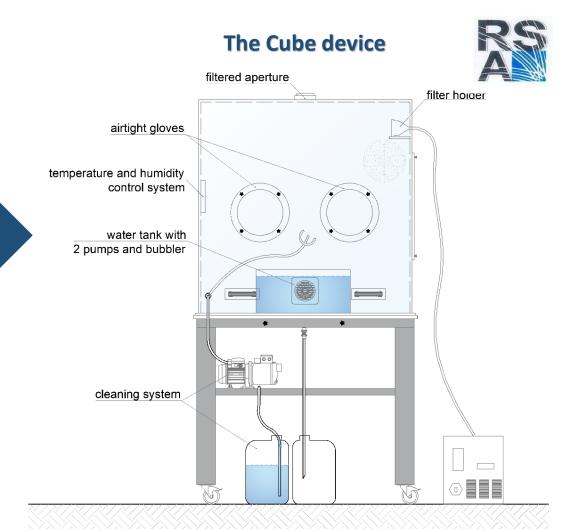
FIBRES CONCENTRATION*	Concentration [f/L]
All mineral particles	27.2·10 ⁶
Chrysotile + fibrous tremolite/actinolite	6.7·10 ⁶

^{*}All fibres are considered, despite their length.

STEM image of an antigorite fibre $1 \mu m$

Avataneo C. et al. (2021). Groundwater Asbestos pollution from Naturally Occurring Asbestos (NOA): a preliminary study on the Lanzo Valleys and Balangero Plain area, NW Italy. Italian Journal of Engineering Geology and Environment, 1.

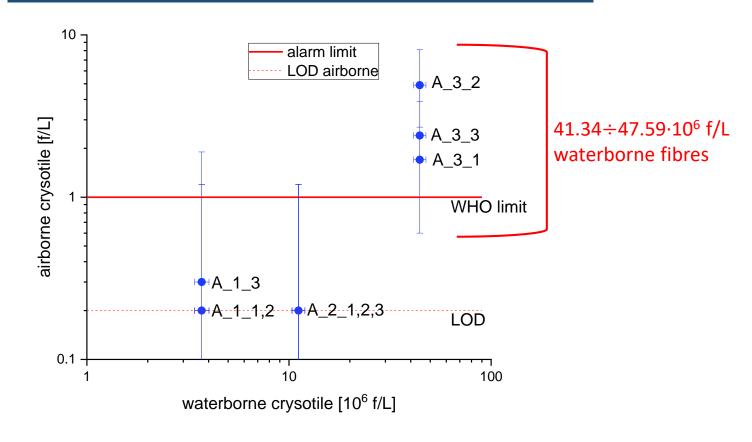
Experimental simulation to evaluate water-to-air migration



SURFACE WATERS

REAL SAMPLES

Average asbestos concentration in stream water: 106 f/L, with peaks of 20. 106 f/L (period 2018-2019).


Sample prepared for	Waterborne chrysotile added in
experimental simulation	prepared suspension [μg/L]
W_0	Drinking water, no chrysotile added
W_1	13.74
W_2	27.48
W_3	137.40

Avataneo C. et al. (2022). Chrysotile asbestos migration in air from contaminated water: An experimental simulation. Journal of Hazardous Materials, 424, 127528.

Experimental simulation to evaluate water-to-air migration – Main results

Chrysotile airborne concentration vs. waterborne concentration

Avataneo C. et al. (2022). Chrysotile asbestos migration in air from contaminated water: An experimental simulation. Journal of Hazardous Materials, 424, 127528.

- The occurrence of different types of mineral fibres (both asbestos and non-asbestos classified) in the water system of the area is verified.
- Fibres found in groundwater are mainly characterized by length $< 5 \mu m$ and show different composition.
- Analyses of asbestos in groundwater are difficult and possibly requires TEM-EDS-SAED investigations.
- Asbestos is found in large amount in **surface waters**, it constitutes an environmental problem due to **water-to-air migration**.
- About 40·10⁶ f/L waterborne fibres could release more than 1 f/L in air (WHO alarm limit).

REAL SAMPLES

CHARACHTERIZATION

Groundwater

- **TEM-EDS-SAED characterization** of all sampling points.
- Definition of a protocol to prepare and analyse groundwater samples.
- Study on **possible fibres movement in saturated porous aquifers** [Session HS8.2.1-Friday 27.05, h 16.03].

Surface waters

- Deepen the **experimental test** using different asbestos concentrations and types (e.g. amphiboles).
- Share good practices to prepare and analyse surface waters samples.
- Define an alarm limit level for waterborne fibres.

FUTURE

PERSPECTIVES

MANY THANKS TO ALL THE PEOPLE WHO CONTRIBUTED TO THIS STUDY!

In particular:

Prof. Elena Belluso

Prof. Domenico Antonio De Luca

Dott. Silvana Capella

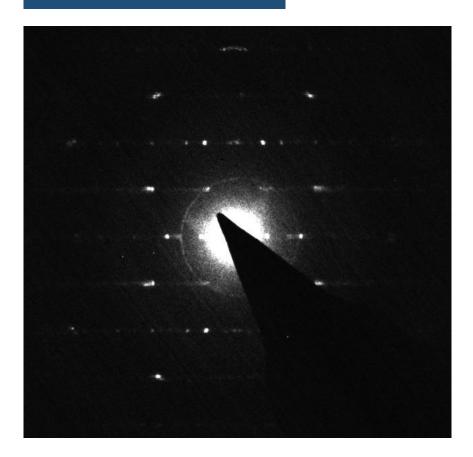
Dott. Manuela Lasagna

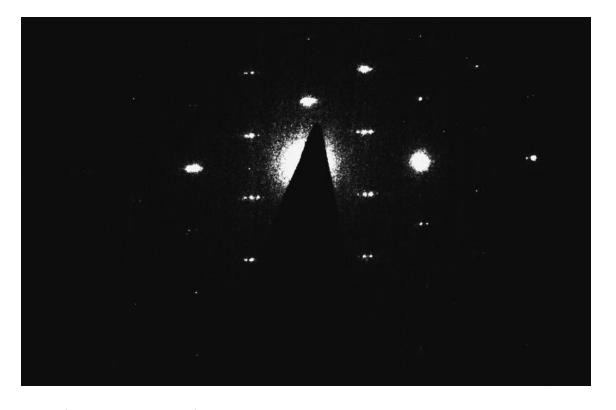
Dott. Francesco Turci

Dott. Jasmine Rita Petriglieri

Dott. Maura Tomatis

The RSA s.r.l. staff




TEM-EDS-SAED characterization

GROUNDWATER

DP of a chrysotile fibre

TEM-EDS-SAED analyses in collaboration with the Analytical Mineralogy group – Friedrich-Schiller University of Jena, Germany

DP of an antigorite fibre