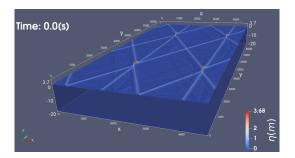
Analysis and numerical experiments on extreme waves through oblique interaction of solitary waves

Onno Bokhove -with A. Kalogirou, J. Choi & M. Kelmanson

Leeds Institute for Fluid Dynamics; EGU2022: Extreme events in sea waves



Outline

- Motivation
- Mathematical models: Benney-Luke and KP equations
- Exact solutions of the Kadomtsev-Petviashvili equation

Examples with one, two, or three line solitons

Proof of maximum amplification

Numerical simulations

Two interacting line solitons

Three interacting line solitons

Summary of main results

Motivation on modelling extremely high water waves

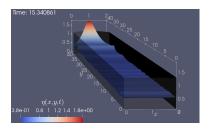
- Origin 2010 bore-soliton-splash:
- To what extent do exact but idealised extreme- or rogue-wave solutions survive in more realistic settings?
- Will such extreme waves fall apart due to dispersion or other mechanisms?
- Use fourfold and ninefold amplifications of interacting solitons/cnoidal waves.
- What do you think: will we be able to reach the ninefold wave amplification in more realistic calculations or in reality?

Motivation on modelling extremely high water waves

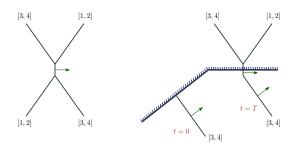
- Rogue waves: anomalously high-amplitude waves ${\rm Abnormality~index:} \qquad {\rm AI} = \frac{H_r}{H_s} > 2$
- Large waves at sea occur rarely and are difficult to predict.
- Crossing seas: short-crested sea states stemming from interacting waves with two or three distinct main directions.
- Rogue-wave statistics required but here we focus on deterministic solutions.

Introduction to this work

- Analytical solutions of Kadomtsev-Petviashvili (KP) equation
 - √ line solitons: 2D extension of soliton solutions of KdV
 - web solitons: interacting line solitons with different orientations in the far field
- Resolve these solutions numerically in higher-order wave models, here the Benney-Luke (BL) equations



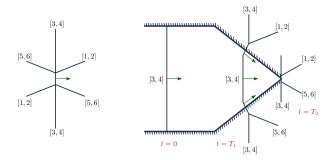
Introduction to this work



Two-soliton solutions of the KP (amplitude \tilde{A}) on infinite plane approximately describe the interaction of one soliton travelling along a wall, then encountering and interacting with a corner \rightsquigarrow *Maximum amplif.*: $4\tilde{A}$ [Miles, 1977; Kodama, 2010; Gidel et al. 2017]

But ... unidirectional KP equation cannot have walls

Introduction to this work

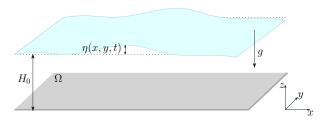


Three-soliton solutions of the KP (amplitude \tilde{A}) on infinite plane approximately describe the interaction of one soliton travelling along a channel with two walls and a contraction [Bokhove et al., 2019] \leadsto localised soliton splash of max amplification $\sim\!8.6\tilde{A}$ [Kodama, 2013]

Here will prove $9\tilde{A}$ max amplification and establish validity in BL

Mathematical hierarchy: potential-flow theory

Velocity potential $\phi(x, y, z, t)$, defined by $\boldsymbol{u} = \boldsymbol{\nabla} \phi$ (irrotational flow)



Water-wave equations

$$\nabla^2 \phi = 0 \quad \text{in} \quad \Omega$$

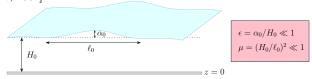
$$\partial_t \eta + \nabla \phi \cdot \nabla \eta - \partial_z \phi = 0 \quad \text{at} \quad z = H_0 + \eta$$

$$\partial_t \phi + \frac{1}{2} |\nabla \phi|^2 + g\eta = 0 \quad \text{at} \quad z = H_0 + \eta$$

$$\mathbf{n} \cdot \nabla \phi = 0 \quad \text{on} \quad z = 0 \quad \text{and} \quad \partial \Omega$$

Mathematical hierarchy: BL and KP approximations

- \leadsto Shallow water approximation: long wave length compared to mean water depth
- → Boussinesq approximation: includes weak dispersive effects
 - KdV equation: wave propagation in 1D [Korteweg & de Vries, 1895]
 - KP equation: unidirectional propagation in 2DH [Kadomtsev & Petviashvili, 1970]
 - Benney-Luke equations: bidirectional propagation in 2DH [Benney & Luke, 1964]



Expansion about the sea-bed potential $\Phi(x,y,t)=\phi(x,y,z=0,t)$, in powers of the small parameter μ [Pego & Quintero, 1999]

Benney-Luke (BL) equations

$$\begin{split} \partial_t \eta - \frac{\mu}{2} \partial_t \nabla^2 \eta + \nabla \cdot \left((1 + \epsilon \eta) \, \nabla \varPhi \right) - \frac{2\mu}{3} \nabla^4 \varPhi &= 0 &\quad \text{in } \Omega \\ \partial_t \varPhi - \frac{\mu}{2} \partial_t \nabla^2 \varPhi + \frac{\epsilon}{2} \, |\nabla \varPhi|^2 + \eta &= 0 &\quad \text{in } \Omega \\ \mathbf{n} \cdot \nabla \varPhi &= 0 &\quad \text{on } \partial \Omega \\ \mathbf{n} \cdot \nabla (\nabla^2 \varPhi) &= 0 &\quad \text{on } \partial \Omega \end{split}$$

Total Energy

$$E(t) = \int_{\Omega} \left(\frac{1}{2} \eta^2 + \frac{1}{2} (1 + \epsilon \eta) |\nabla \Phi|^2 + \frac{\mu}{3} (\nabla^2 \Phi)^2 \right) dx dy$$

is conserved in time due to the Hamiltonian nature of the system [Bokhove & Kalogirou, 2016]

Kadomtsev-Petviashvili (KP) equation

The KP equation can be obtained from the Benney-Luke equations by introducing the formal perturbation expansions

$$\eta = \tilde{u} + \mathcal{O}(\epsilon^2), \qquad \Phi = \sqrt{\epsilon} \left(\tilde{\Psi} + \mathcal{O}(\epsilon^2) \right),$$

using the transformations

$$X = \sqrt{\frac{\epsilon}{\mu}} \left(\frac{3}{\sqrt{2}}\right)^{1/3} (x - t), \qquad Y = \sqrt{\epsilon} \sqrt{\frac{\epsilon}{\mu}} \left(\frac{3}{\sqrt{2}}\right)^{2/3} y,$$
$$\tau = \epsilon \sqrt{\frac{2\epsilon}{\mu}} t, \qquad u = \left(\frac{3}{4}\right)^{1/3} \tilde{u},$$

and taking $\mu=\epsilon^2$, resulting in the KP equation in "standard" form

$$\partial_X (4\partial_\tau u + 6u\partial_X u + \partial_{XXX} u) + 3\partial_{YY} u = 0$$

This equation includes weak effects in the y-direction.

Exact solution of the KP equation

Web and line-soliton solutions can be constructed using Hirota's transformation

$$u(X, Y, \tau) = 2\partial_{XX} \ln K(X, Y, \tau) = \frac{2\partial_{XX} K}{K} - 2\left(\frac{\partial_X K}{K}\right)^2,$$

where function $K(X,Y,\tau)$ can be obtained from the Wronskian

$$K(X,Y,\tau) = \left| \begin{array}{cccc} f_1 & f_1^{(1)} & \dots & f_1^{(N-1)} \\ f_2 & f_2^{(1)} & \dots & f_2^{(N-1)} \\ \vdots & \vdots & & \vdots \\ f_N & f_N^{(1)} & \dots & f_N^{(N-1)} \end{array} \right|.$$

Particular soliton solutions are obtained by taking [Kodama, 2010]

$$f_i = \sum_{j=1}^M a_{ij} e^{\theta_j}, \quad \text{where } \theta_j = k_j X + k_j^2 Y - k_j^3 \tau,$$

with coefficients k_j being ordered as $k_1 < k_2 < \cdots < k_M$. This solution is called a (N_-, N_+) -soliton, comprising line solitons in the far-field $Y \to \pm \infty$.

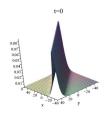
Example: single line soliton

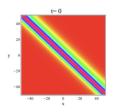
Single line solitons have (N,M)=(1,2), resulting in $K=f_1=\mathrm{e}^{\theta_1}+\mathrm{e}^{\theta_2}$ and the line soliton solution is

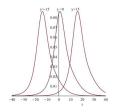
$$u(X, Y, \tau) = \frac{1}{2}(k_1 - k_2)^2 \operatorname{sech}^2 \frac{1}{2}(\theta_1 - \theta_2)$$

= $\frac{1}{2}(k_1 - k_2)^2 \operatorname{sech}^2 \frac{1}{2}((k_1 - k_2)X + (k_1^2 - k_2^2)Y - (k_1^3 - k_2^3)\tau).$

The soliton amplitude is $\tilde{A} = \frac{1}{2}(k_1 - k_2)^2$ and its centreline is found by setting the sech^2 argument to zero.







Example: two interacting line solitons

Two line solitons have (N,M)=(2,4), also called (2,2)-solitons or O-solitons, obtained with functions $f_1=\mathrm{e}^{\theta_1}+\mathrm{e}^{\theta_2},\ f_2=\mathrm{e}^{\theta_3}+\mathrm{e}^{\theta_4}$, and

$$K(X,Y,\tau) = (k_3 - k_1)e^{\theta_1 + \theta_3} + (k_3 - k_2)e^{\theta_2 + \theta_3} + (k_4 - k_1)e^{\theta_1 + \theta_4} + (k_4 - k_2)e^{\theta_2 + \theta_4}.$$

Example: two interacting line solitons

Two line solitons have (N,M)=(2,4), also called (2,2)-solitons or O-solitons, obtained with functions $f_1=\mathrm{e}^{\theta_1}+\mathrm{e}^{\theta_2}$, $f_2=\mathrm{e}^{\theta_3}+\mathrm{e}^{\theta_4}$, and

$$K(X,Y,\tau) = (k_3 - k_1)e^{\theta_1 + \theta_3} + (k_3 - k_2)e^{\theta_2 + \theta_3} + (k_4 - k_1)e^{\theta_1 + \theta_4} + (k_4 - k_2)e^{\theta_2 + \theta_4}.$$

In the far field $Y \to \pm \infty$, we find the single line solitons

$$u_{[1,2]}(X,Y,\tau) = \frac{1}{2}(k_2 - k_1)^2 \operatorname{sech}^2 \frac{1}{2}(\theta_1 - \theta_2 - \ln a),$$

$$u_{[3,4]}(X,Y,\tau) = \frac{1}{2}(k_4 - k_3)^2 \operatorname{sech}^2 \frac{1}{2}(\theta_3 - \theta_4 - \ln b),$$

where a, b depend on k_i .

Example: two interacting line solitons

Two line solitons have (N,M)=(2,4), also called (2,2)-solitons or O-solitons, obtained with functions $f_1=\mathrm{e}^{\theta_1}+\mathrm{e}^{\theta_2},\ f_2=\mathrm{e}^{\theta_3}+\mathrm{e}^{\theta_4}$, and

$$K(X,Y,\tau) = (k_3 - k_1)e^{\theta_1 + \theta_3} + (k_3 - k_2)e^{\theta_2 + \theta_3} + (k_4 - k_1)e^{\theta_1 + \theta_4} + (k_4 - k_2)e^{\theta_2 + \theta_4}.$$

In the far field $Y \to \pm \infty$, we find the single line solitons

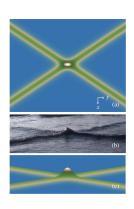
$$u_{[1,2]}(X,Y,\tau) = \frac{1}{2}(k_2 - k_1)^2 \operatorname{sech}^2 \frac{1}{2}(\theta_1 - \theta_2 - \ln a),$$

$$u_{[3,4]}(X,Y,\tau) = \frac{1}{2}(k_4 - k_3)^2 \operatorname{sech}^2 \frac{1}{2}(\theta_3 - \theta_4 - \ln b),$$

where a,b depend on k_j . For equal far-field soliton amplitudes $\tilde{A}=\frac{1}{2}(k_2-k_1)^2=\frac{1}{2}(k_4-k_3)^2$, the solution satisfies [Kodama, 2010]

$$2\tilde{A} \leq \max_{(X,Y,\tau)} u(X,Y,\tau) \leq 2 \left(1 + \frac{1 - \sqrt{\Delta_o}}{1 + \sqrt{\Delta_o}}\right) \tilde{A},$$

where $0 \le \Delta_o \le 1$, hence $2\tilde{A} \le \max u \le 4\tilde{A}$.



Example: three interacting line solitons

Three line solitons, known as (3,3)-solitons, have (N,M)=(3,6) and functions $f_1=\mathrm{e}^{\theta_1}+\mathrm{e}^{\theta_2}$, $f_2=\mathrm{e}^{\theta_3}+\mathrm{e}^{\theta_4}$, $f_3=\mathrm{e}^{\theta_5}+\mathrm{e}^{\theta_6}$, and

$$\begin{split} K(X,Y,\tau) &= \underline{A_{135}} \, \mathrm{e}^{\theta_1 + \theta_3 + \theta_5} + \underline{\underline{A_{235}}} \, \mathrm{e}^{\theta_2 + \theta_3 + \theta_5} + \underline{\underline{A_{136}}} \, \mathrm{e}^{\theta_1 + \theta_3 + \theta_6} + A_{236} \, \mathrm{e}^{\theta_2 + \theta_3 + \theta_6} \\ &\quad + A_{145} \, \mathrm{e}^{\theta_1 + \theta_4 + \theta_5} + \underline{\underline{A_{245}}} \, \mathrm{e}^{\theta_2 + \theta_4 + \theta_5} + \underline{\underline{A_{146}}} \, \mathrm{e}^{\theta_1 + \theta_4 + \theta_6} + \underline{\underline{A_{246}}} \, \mathrm{e}^{\theta_2 + \theta_4 + \theta_6}, \end{split}$$

with the following parameter ordering $k_1 < k_2 < k_3 < 0 < k_4 < k_5 < k_6$.

Example: three interacting line solitons

Three line solitons, known as (3,3)-solitons, have (N,M)=(3,6) and functions $f_1=\mathrm{e}^{\theta_1}+\mathrm{e}^{\theta_2}$, $f_2=\mathrm{e}^{\theta_3}+\mathrm{e}^{\theta_4}$, $f_3=\mathrm{e}^{\theta_5}+\mathrm{e}^{\theta_6}$, and

$$\begin{split} K(X,Y,\tau) &= \underline{A_{135}} \, \mathrm{e}^{\theta_1 + \theta_3 + \theta_5} + \underline{\underline{A_{235}}} \, \mathrm{e}^{\theta_2 + \theta_3 + \theta_5} + \underbrace{A_{136}} \, \mathrm{e}^{\theta_1 + \theta_3 + \theta_6} + A_{236} \, \mathrm{e}^{\theta_2 + \theta_3 + \theta_6} \\ &\quad + A_{145} \, \mathrm{e}^{\theta_1 + \theta_4 + \theta_5} + \underline{A_{245}} \, \mathrm{e}^{\theta_2 + \theta_4 + \theta_5} + \underline{A_{146}} \, \, \mathrm{e}^{\theta_1 + \theta_4 + \theta_6} + \underline{A_{246}} \, \mathrm{e}^{\theta_2 + \theta_4 + \theta_6}, \end{split}$$

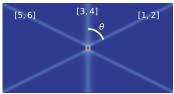
with the following parameter ordering $k_1 < k_2 < k_3 < 0 < k_4 < k_5 < k_6$.

In the far field $Y \to \pm \infty$, we find the single line solitons

$$u_{[1,2]} \approx \frac{1}{2} (k_2 - k_1)^2 \operatorname{sech}^2 \frac{1}{2} (\theta_1 - \theta_2 - \ln \tilde{a}),$$

$$u_{[5,6]} \approx \frac{1}{2} (k_6 - k_5)^2 \operatorname{sech}^2 \frac{1}{2} (\theta_5 - \theta_6 - \ln \tilde{b}),$$

$$u_{[3,4]} \approx \frac{1}{2} (k_4 - k_3)^2 \operatorname{sech}^2 \frac{1}{2} (\theta_3 - \theta_4),$$



with
$$\theta_i - \theta_j = (k_i - k_j) (X + (k_i + k_j)Y - (k_i^2 + k_i k_j + k_j^2)\tau)$$
.

Example: three interacting line solitons

Parameters k_1, \ldots, k_6 are determined from

$$k_3 + k_4 = 0$$

$$k_5 + k_6 = -(k_1 + k_2) = \tan \theta$$

$$k_4 - k_3 = \sqrt{2\tilde{A}}$$

$$k_6 - k_5 = k_2 - k_1 = \sqrt{2\tilde{A}/\lambda}$$

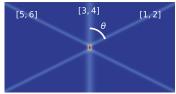
Solving the above six equations, gives

$$k_6 = -k_1 = \sqrt{\tilde{A}} \left(\sqrt{2/\lambda} + \sqrt{1/2} + \delta \right)$$
$$k_5 = -k_2 = \sqrt{\tilde{A}} \left(\sqrt{1/2} + \delta \right)$$
$$k_4 = -k_3 = \sqrt{\tilde{A}/2}$$

where δ is defined by

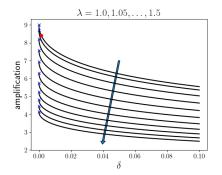
$$\delta = \frac{\tan \theta}{2\sqrt{3}} - \left(\sqrt{1/2\lambda} + \sqrt{1/2}\right) > 0.$$

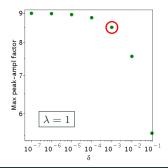
where angle $\theta>0$, $\tilde{A}=\frac{1}{2}(k_4-k_3)^2 \text{ is the amplitude of the } [3,4]$ soliton, and the outer two solitons are assumed to have amplitude \tilde{A}/λ , for $\lambda>1$.



Proof of maximum amplification

- Proof is based on a geometric argument (additional secondary proof)
- Find centreline of each of three line solitons (no phase shift at peak)
- Look for intersection points \leadsto this gives two values of Y, with mean at a unique point Y_* when $\tau_*=0$ and $X_*=0$
- The space-time point of maximum amplification is (X_*,Y_*, au_*)
- $\bullet \ \ \text{Amplification:} \ \ \frac{u(X_*,Y_*,\tau_*)}{\tilde{A}} = \frac{(\sqrt{\lambda}+2)^2}{\lambda} + \mathcal{O}(\sqrt{\delta}) \xrightarrow[\delta=0]{} 1 + \frac{4}{\lambda} + \frac{4}{\sqrt{\lambda}}$





Numerical implementation

An automated system for the solution of PDEs using the Finite Element Method (FEM).

Firedrake employs Unified Form Language (UFL) and linear & non-linear solvers PETSc solvers [Rathgeber et al., 2016].

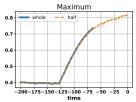
- Space-time discretisation 2nd order of variational principle for BL: bounded energy oscillations, phase-space conserved.
- Continuous Galerkin (CG) FEM in space, with approximations and test functions w_k given by variations $\delta \eta_h$, $\delta \Phi_h$:

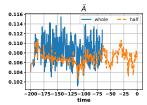
$$\eta(x,y,t) \approx \eta_h(x,y,t) = \sum_k \eta_k(t) w_k(x,y), \dots$$

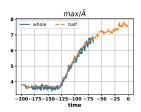
- Symplectic Störmer-Verlet time stepping scheme.
- Stable numerical scheme: no artificial amplitude damping . . .

Computational domain: ∼**cnoidal waves**

- KP solutions hold on infinite horizontal plane, so domain has to be sufficiently large to eliminate reflection at boundaries.
- Solutions can be set to become approximately periodic in sufficiently large domains.
- Transform $\Phi = (U_0 x + c_0) + \tilde{\Phi}$, where $\tilde{\Phi}$ is periodic, then solve the Benney-Luke equations for η and $\tilde{\Phi}$.
- Doubly or singly periodic domain?







Initial conditions and boundaries

Initial condition consists of two (SP2) or three (SP3) line solitons, expressions of which are known from the KP-solution:

$$\eta_0(x,y) = \eta(x,y,t_0) = 2\left(\frac{4}{3}\right)^{1/3} \partial_{XX} \ln K(X,Y,\tau),$$

$$\Phi_0(x,y) = \Phi(x,y,t_0) = 2\sqrt{\epsilon} \left(\frac{4\sqrt{2}}{9}\right)^{1/3} \partial_X \ln K(X,Y,\tau).$$

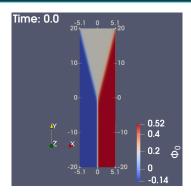
Computational domain is constructed such that initial condition satisfies "periodic boundary conditions" in x-direction.

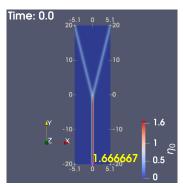
Case	L_x	L_y	T	N_x	N_y	$\Delta x = \frac{L_x}{N_x}$	$\Delta y = \frac{L_y}{N_y}$	Δt
SP2	10.3	40	50	132	480	0.0779	0.0833	0.005
SP3	20.9	47	200	252	564	0.0829	0.0833	0.005

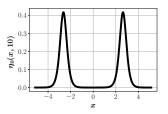
Overview of simulations

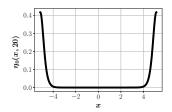
- SP2: two-soliton interaction, with $\tilde{A}\approx 0.4$, $\delta=0$
- SP3: three-soliton interaction, with $\tilde{A}\approx 0.1$, $\lambda=1$, $\delta\approx 0.001$
- Higher-order polynomial resolution CG2/CG3 for convergence
- Benney-Luke numerical solutions consistent with exact KP solutions, difference within order ϵ (here, $\epsilon=0.05$)

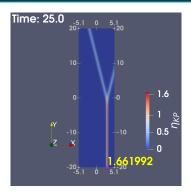
Case	Equation	$ ilde{A}$	max	$\max/ ilde{A}$	
	η_{KP}	~ 0.415	~ 1.66	4.0	
SP2	η	0.399 - 0.435	1.56 - 1.69	3.64 - 4.01	
	η_{KP}	~ 0.104	0.396 - 0.875	8.41	
SP3	η	0.103 - 0.111	0.390 - 0.818	3.60 - 7.83	

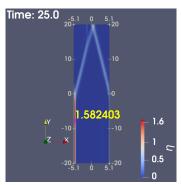


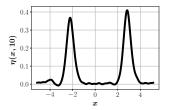


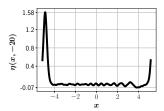


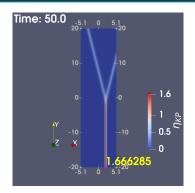


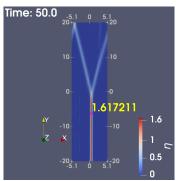


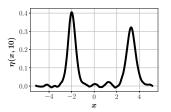


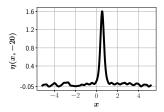


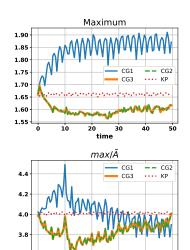








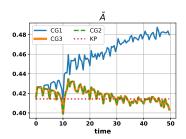


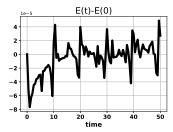


30 40

time

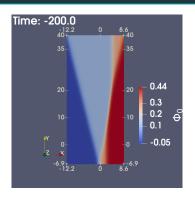
50

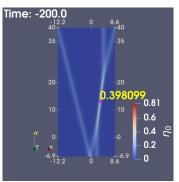


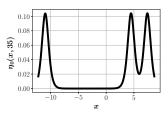


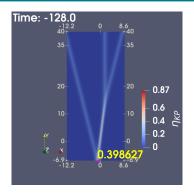
3.6 ↓

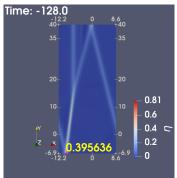
10 20

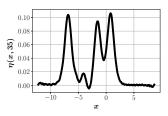


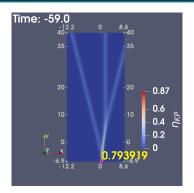


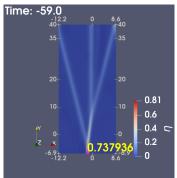


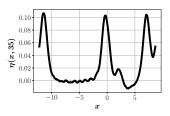


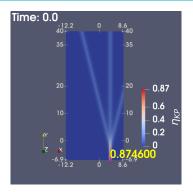


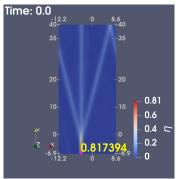


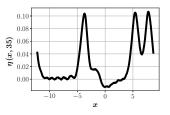


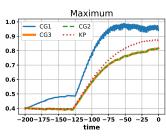


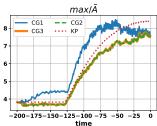


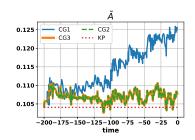


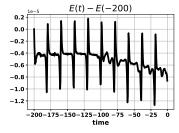






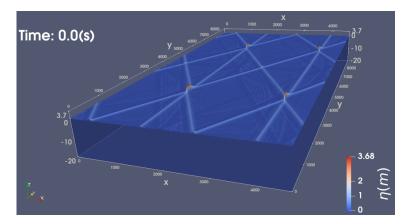






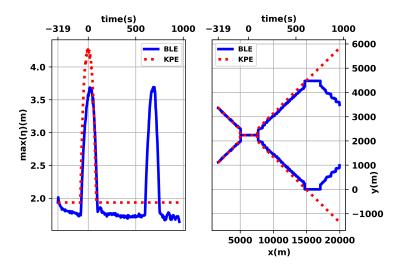
Results for three-soliton interaction (dimensional)

Crossing seas (four/eight domains combined)



Results for three-soliton interaction (dimensional)

Cnoidal waves with periodicity in x, y, t (max. vs. t & x-y tracks):



Summary

- Nine-fold soliton amplification shown theoretically, but only in limit $\delta \to 0$
- Web-soliton amplification KP ≈ 8.4 , simulated for BL ≈ 7.8

- Amplifications achieved as simulated cnoidal crossing seas
- Rogue wave calculation: AI > 2 to $4.0 = \max(\eta)/H_s$
- Can we reach nine-fold amplification in BL?
- Can amplifications survive in potential-flow modelling/lab?

References

- Choi, B, Kalogirou, Kelmanson (2022) Water Waves, in press.
 (EarthArXiv: doi.org/10.31223/X54H0T)
- B, Kalogirou, Zweers (2019) From bore-soliton-splash to a new wave-to-wire wave-energy model. Water Waves 1.
- Gidel, B, Kalogirou (2017) Variational modelling of extreme waves through oblique interaction Nonl. Proc. Geophys. 24.
- B, Kalogirou (2016) Variational Water Wave Modelling: from Continuum to Experiment. Theory of Water Waves, Bridges et al., London Math. Soc. 426.
- Hairer, Lubich, Wanner (2006) Geometric Numerical Integration.
- Pego, Quintero (1999) 2D solitary waves of a BL equation. Physica D 132.
- Crossing seas YouTube movie
- Email: 0.Bokhove@leeds.ac.uk (EU Eagre: GA859983)