

Comprehensive Insights Into O₃ Changes During the COVID-19 From O₃ Formation Regime and Atmospheric Oxidation Capacity

Peng WANG
Shengqiang ZHU and Hongliang ZHANG

Background

- Anthropogenic emissions decreased in China, but the AOC increased, leading to the elevated O₃ issue.
- The sink ($PM_{2.5}$) of NO_x and HO_2 radical reduced, leading to the elevated O_3 issue.
- Simultaneously, more VOCs reacted with the oxidants (e.g. OH radical), leading to the elevated O₃ issue.

What is AOC?

- AOC plays a key role in the secondary pollutants formation.
- AOC is defined as the sum of individual oxidation rates of primary pollutants (VOCs) by oxidants (HO_x and NO_3)
- These oxidants are regarded as indicators to assess AOC

RO

R'CHO

HCHO

NO2

hν

HO₂ + h ν

NO

$$AOC = [OH] \times k_{OH} + [O_3] \times k_{O3} + [NO_3] \times k_{NO3} + \dots$$

Major oxidation pathway

AOC in COVID-19

- During the lockdown period, most transportation and commercial activities were terminated which gives an important opportunity to investigate the changes in air quality due to drastic emissions reduction.
- PM_{2.5} decreased but the O₃ increased in eastern China during the lock-down.

AOC study

- We utilized comprehensive satellite, ground-level observations, and sourceoriented chemical transport modeling to investigate the O_3 variations
- Study periods: Pre-lockdown (Jan. 6-22), Lockdown (Jan. 23-Feb. 29) and Post-lockdown (Mar. 1-31)

Model setup

- Satellite: HCHO and NO₂ are from TROPOMI
- CTM: source-oriented CMAQ v5.0.2
- MET: WRF v4.2
- Emission: MEIC+MEGAN

O₃ observation

- O_3 increased across China during the Lockdown.
- Over 30% of O_3 increased in the NCP and YRD regions.
- During Post-lockdown, observed O₃ concentrations continued to increase in the NCP and YRD regions.

2019 O₃ vs 2020 O₃

- the changes of O_3 levels between the same periods of Pre-lockdown and Lockdown in 2019 were not as obvious as in 2020.
- Both meteorology and emission reduction played important roles in O_3 elevation in NCP

Precursors?

- Sat: TROPOMI data and Sim: CMAQ simulations
- NO₂ in the NCP, YRD, and PRD regions declined by 59.61%, 63.28%, and 44.03% during the Lockdown respectively.
- No noticeable changes were observed in the HCHO, indicating the stable/higher level of AOC.

Sensitivity Regime

- The changes of precursor lead to the shift of O₃ sensitivity regimes
- Regime Indicator = $HCHO/NO_2$
- During the Lockdown, VOClimited regimes changed to NO_x-limited or transition regime.
- Investigated impacts of AOC on O₃ levels, which were associated closely with the shift of O₃ formation regime

Sensitivity Regime

Pre				CMAQ		
	NO _x - limited	Transition	VOC- limited	NO _x - limited	Transition	VOC- limited
NCP	0.11	0.22	0.67	0.13	0.15	0.72
YRD	0.37	0.45	0.17	0.03	0.31	0.66
PRD	0.31	0.41	0.28	0.31	0.23	0.46
Lockdown	TROPOMI			CMAQ		
	NO _x - limited	Transition	VOC- limited	NO _x - limited	Transition	VOC- limited
NCP	0.56	0.36	0.08	0.20	0.28	0.52
YRD	0.65	0.33	0.02	0.29	0.55	0.16
PRD	0.69	0.31	0.0	0.44	0.28	0.28
Post	TROPOMI			CMAQ		
	NO _x - limited	Transition	VOC- limited	NO _x - limited	Transition	VOC- limited
NCP	0.48	0.36	0.16	0.09	0.26	0.65
YRD	0.57	0.38	0.05	0.09	0.39	0.51
PRD	0.74	0.0	0.26	0.28	0.36	0.36

In the NCP, the NOx-limited regime increased from **0.11 to 0.56** during the Lockdown.

Changes of AOC

- Significantly enhanced AOC in the NCP and YRD regions, which is consistent with the variation of O₃ concentrations.
- The NO₃ radical, the primary nighttime oxidant, has increased significantly in the NCP and YRD regions during the Lockdown

Conclusions

- AOC was enhanced significantly with the decline of NOx, which contributed to the O₃ elevation during Lockdown.
- O₃ formation regime has shifted from VOClimited to NOx-limited with the impact of dramatic emission reduction during Lockdown

- The importance of balanced emission control policies has been emphasized
- We recommend that O_3 control policies of emission reduction utilize knowledge regarding the associations of O_3 formation regime, AOC variations, and O_3 levels.

Thanks!

