Improving high-resolution ocean reanalyses using a smoother algorithm

Bo Dong, Keith Haines and Matthew Martin

Dong, B., Haines, K. and Martin, M., (2021). Improved high resolution ocean reanalyses using a simple smoother algorithm. *Journal of Advances in Modeling Earth Systems*, 13(12), p.e2021MS002626.

EGU session OS4.7, 25th May 2022

Motivation

- Long memory and sparse observation of the ocean
 use "future" data to improve historical state estimate
- Operational Ocean Forecasting is sequential (only using past data), e.g.,
 3DVar-FGAT. Same method used for Reanalysis! =>Future data not being used!
- Increments from reanalysis are archived.
- Smoother uses increments for smoothing in future data.

Simple smoothing algorithm

Smoothing S, of Analysis A + Increments I; Time decay γ where $\gamma < 1$

$$S_{t=0} = A_{t=0} + \gamma I_{t=1} + \gamma^2 I_{t=2} + \gamma^3 I_{t=3} + \gamma^4 I_{t=4} + \dots$$

$$S_{t=1} = A_{t=1} + \gamma I_{t=2} + \gamma^2 I_{t=3} + \gamma^3 I_{t=4} + \gamma^4 I_{t=5} + \dots$$

$$S_0 = A_0 + \gamma [S_1 - A_1 + I_1]$$

Smoother Analysis Smoother increment

Recursive relationship: Start at latest time t and work backward through reanalysis

- Decay timescale $\tau = -1/\ln(\gamma)$ e.g., ~3 days for $\gamma = 0.7$
- Variations in $\gamma(x,y,z)$ possible

Lorenz 1963 twin

x observation frequency 20 timesteps y observation frequency 100 timesteps no z observation Analysis time window 5 timesteps using 3DVar-FGAT

Truth, free model run Analysis and Smoother solutions

Increments: Analysis vs. Smoother

Compare ocean smoother with EnKS

7.5

5.0

- Ensemble size 100
- Lag = 14 timesteps (~2.8 window)

0.0

2.5

10.0

12.5

17.5

15.0

20.0

Mean RMSE

Analysis – 1.73 EnKS – 1.69 Smoother – 1.36

Smoother for GloSea5 (FOAM) ocean reanalysis

- Smoother increment added on T and S fields.
- SSH and U,V increments are in geostrophic balance with the density field increments

Met Office 1 day of observations assimilated on 6th Jan 2018

- Forecasting Ocean
 Assimilation Model
 (FOAM) version 14 ocean
 reanalysis, global ¼°
 resolution
- Daily Incremental 3DVar-FGAT
- Incremental analysis update (IAU): assimilation increments are added evenly in the 1-day window during analysis run

www.metoffice.gov.uk

Temperature errors against Argo Observations - June 2016

RMS SSH errors against Altimeter Observations

FOAM SSH Analysis errors

Smoother % SSH error reduction vs. Analysis

reduction in smoother is up to 50% compared to FOAM analysis

RMS velocity errors against 15m Drifters

Smoother % U,V (15m) error reduction vs. Analysis

Independent Drifter Comparison

Smoothed Regional Ocean Heat & Salt content

North Atlantic

Smoother vs. Analysis
Artificial free model run:
stringing together OHC 1-day
tendencies from the
background runs

High frequency changes taking place in the analysis run are coming directly from the DA

Summary

- Ocean smoother performs well in Lorenz 63 and FOAM models
- Only future increments are smoothed internal high frequency variability is retained
- Inexpensive to run! -- advantage over 4DVar and Kalman smoother in global high resolution model.
- Works effectively where
 - observations made in new regions which were not available at all in the forward pass
 - the system evolution is relatively slow so that error covariances do not evolve rapidly

