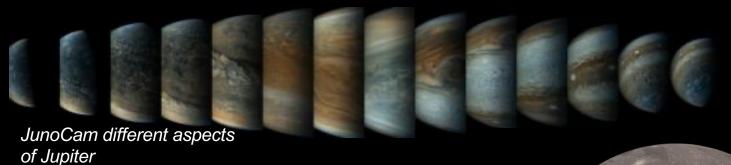


Future atmospheric research objectives of missions to the Jovian and the Kronian systems

Athena Coustenis¹, Conor A Nixon², Therese Encrenaz¹, Panayotis Lavvas³, Olivier Witasse⁴

¹LESIA, Paris Observatory, CNRS, UPMC Univ. Paris 06, Univ. Paris-Diderot, Meudon, France, ²NASA Goddard Space Flight Center, Greenbelt, MD, United States, ³Universite de Reims, Reims, France, ⁴ESA/ESTEC, Noordwijk, Netherlands

Gas giant planets and their satellites



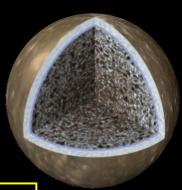
Around JUPITER

Juno images of Jupiter (NASA/JPL/SWRI)

Southern storms

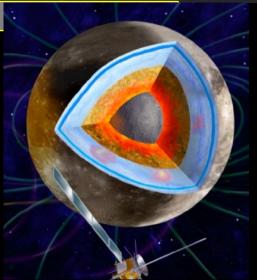
Ganymede as seen by Juno: Caltech/SwRI/MSSS/Kalleheikki Kannisto

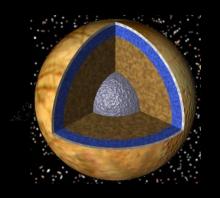
Tenuous atmospheres around jovian icy moons


Three large icy moons to explore for habitable conditions

Ganymede - class IV

- Largest satellite in the solar system
- A deep ocean
- Internal dynamo and an induced magnetic field unique
- Richest crater morphologies
- Best example of liquid environment trapped between icy layers

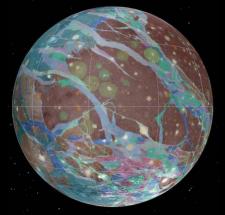

Callisto - class IV


- Best place to study the impactor history
- Differentiation still an enigma
- Only known example of non active but ocean-bearing world
- The witness of early ages

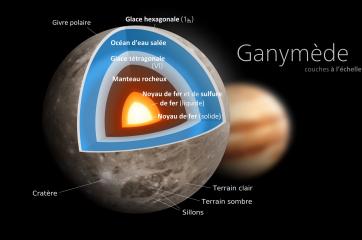
Europa - class III

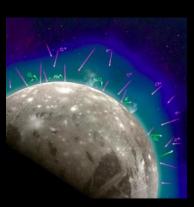
- A deep ocean
- An active world?
- Best example of liquid environment in contact with silicates

GANYMEDE: atmosphere, ionosphere & magnetosphere


Galileo evidences

Induced magnetic field from interaction of jovian magneto with conducting layer (ocean?)

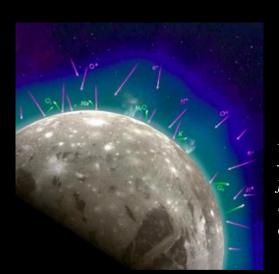

Observed but not characterised

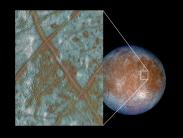


- Own internally-driven dipole magnetic field
- Interaction of Ganymede's minimagnetosphere with Jupiter's

USGS Astrogeology Science Center/Wheaton/NASA/JPL-Caltech

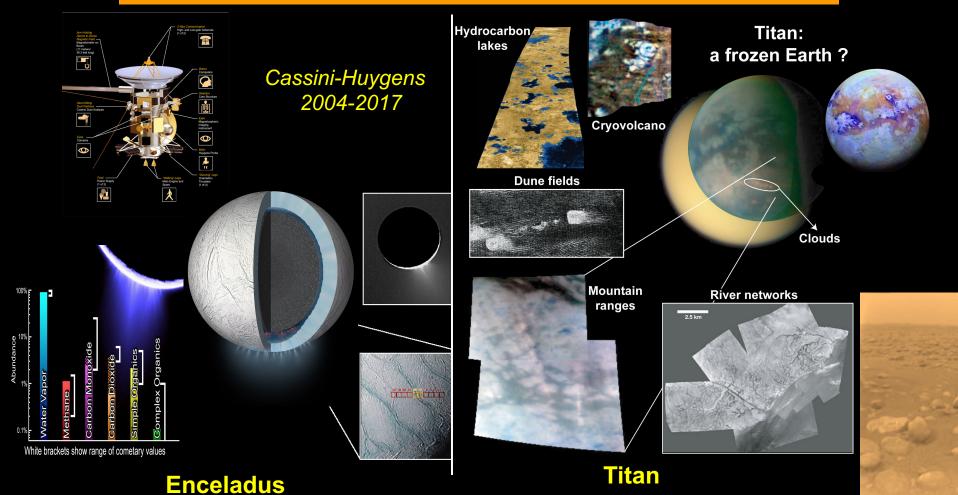
Atmospheric composition : O_2 , H_2O , CH_4 , NH_3 , CO, CO_2 , SO_2 and their constituent atoms O, H, C, and S.


Indications for young surface from water flooding

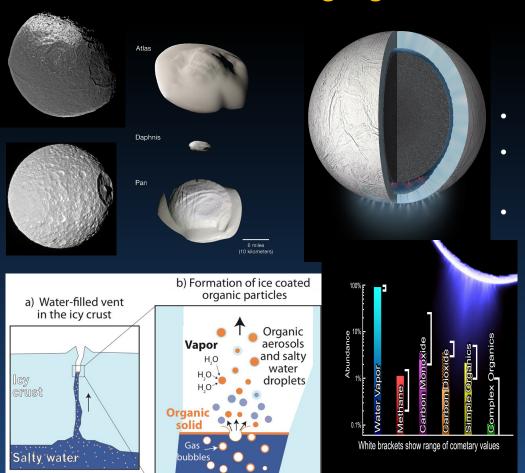

Europa: atmosphere-surface interactions

Tenuous atmosphere & plumes?

HST image Credits: NASA/ESA/W. Sparks (STScI)/USGS Astrogeology Science Center



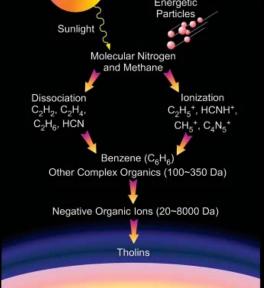
710 km


From Galileo: this image covers a surface of 30 x 70 km, and shows what looks like pieces of ice floating on a frozen sea which could have been liquid in the past. Pointing to a liquid water ocean underneath Europa's surface

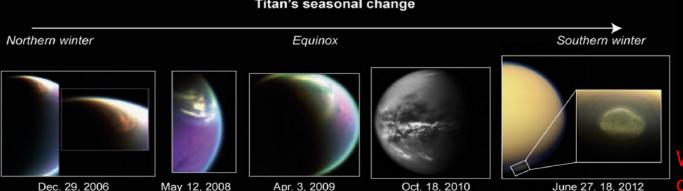
Composition: O₂, H₂O, CH₄, CO₂ etc+ ions resulting from endogenous & exogenous processes & alteration

Around SATURN: Cassini-Huygens mission

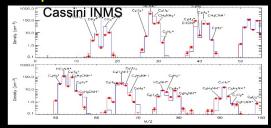
Icy Satellites Science Highlights: Enceladus

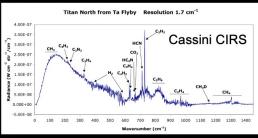

- Discovery of active, icy plumes on Enceladus
- Detection of global oceans beneath Enceladus' and possibly Dione's and Mimas's icy crusts
 - Enceladus emitted ice grains contain concentrated, complex, macromolecular organic material with molecular masses above 200μ . The data is suggestive of a thin organic-rich film on top of the oceanic water table

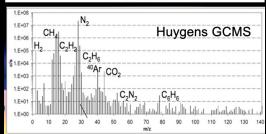
Detection of plume composition: water (vapor and micron-sized grains), salt, organics, nanograin dust, hydrogen, and ammonia


Evidence of hydrothermal chemistry and discovery of a strong thermal anomaly on Enceladus

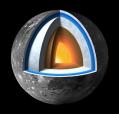
Titan Science atmosphere highlights

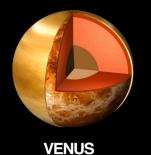

- Titan revealed as Earth-like world with rain, rivers, lakes and seas
- Discovery of variety of weather patterns, including rainstorms, and documented seasonal changes
- Discovery of prebiotic chemistry in a dinitrogenmethane atmosphere on Titan
- Discovery of dense, salty global ocean of liquid water below a thick crust and a relatively low density core

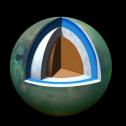


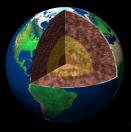

Titan's seasonal change

Results from Cassini-Huygens instruments on atmospheric composition

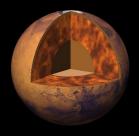


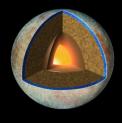

What is the real degree of complexity of the chemistry?


atmospheric density at the surface

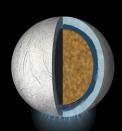

GANYMEDE

ICY MOONS CONNECTIONS



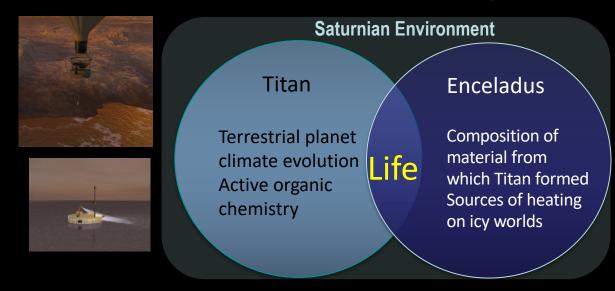

TITAN

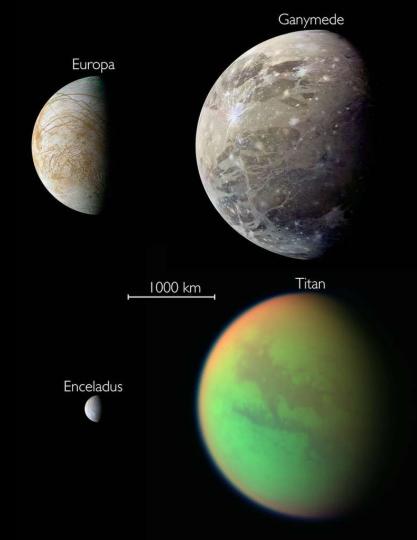
EARTH


MARS

EUROPA

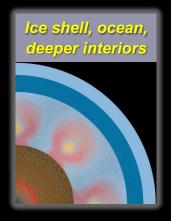
Icy moons offer insights on the terrestrial worlds with atmospheres and the ocean worlds of the Outer Solar System and beyond

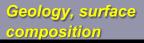

ocean/rock exchange


ENCELADUS

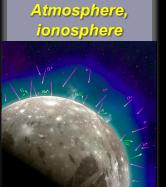
Morgan Cable, Alex Hayes, and Jason Soderblom

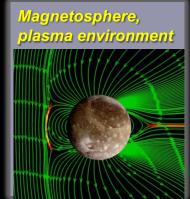
The exploration of the Saturnian system : habitats

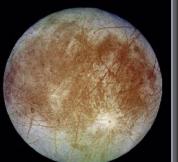

- The Saturnian system is rich in worlds that could bring insights on important aspects of Earth's
- climate,
- organic chemistry and
- emergence of life.



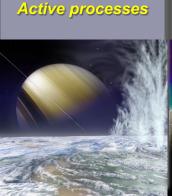
Two categories of icy moons as possible habitats: oceans in contact with the silicate core or not.


Beg for further exploration in the future in multiple ways


Main scientific objectives for a Ganymede/Titan-like object



ATMOSPHERIC/ENVIRONMEN TAL OBSERVATIONS

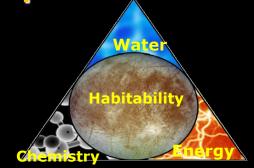

Spectroscopy, occultations, limb observations etc will explore the outer layers from the surface up to about 400 km: O₂, H₂O, CH₄, NH₃, CO, CO₂, SO₂ and their constituent atoms O, H, C, and S.

Main scientific objectives for a Europa/Enceladus-like object

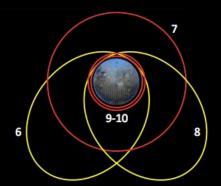


In situ particle experiments will provide key information at low altitudes with the ability to resolve species and isotopic composition

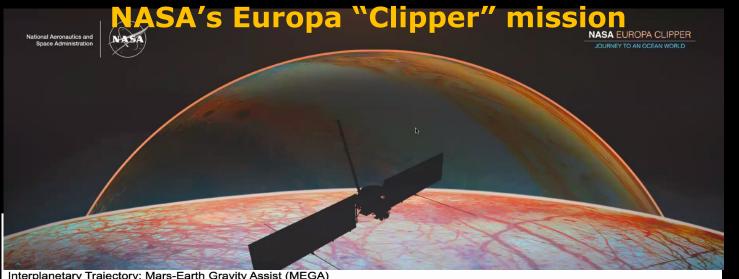
Images Credit: NASA


Future missions at Jupiter

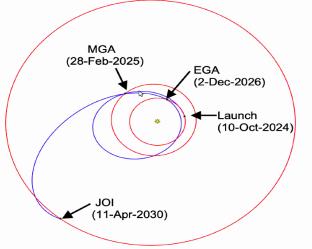
ESA's JUICE: JUpiter Icy moons Explorer

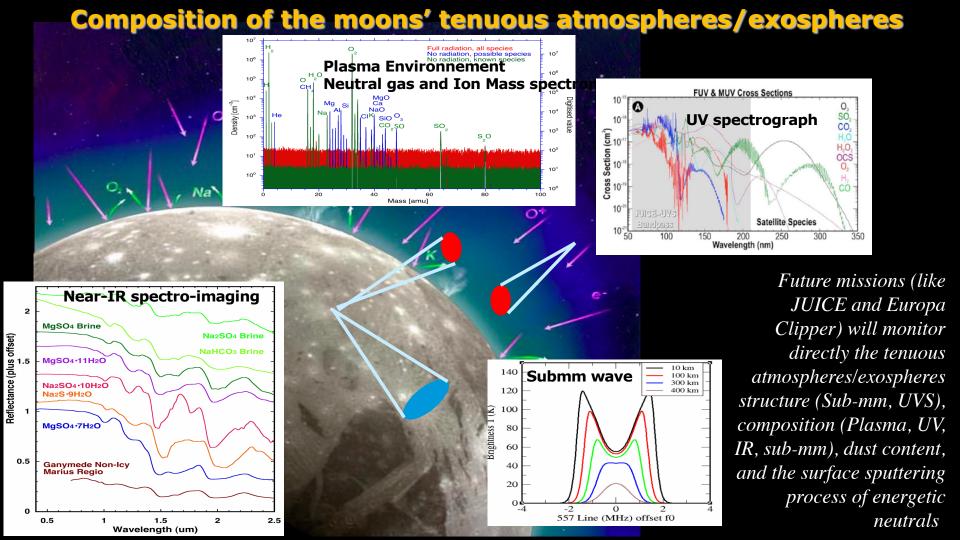

JUICE Science Goals

- Emergence of habitable worlds around gas giants
- Jupiter system as an archetype for gas giants

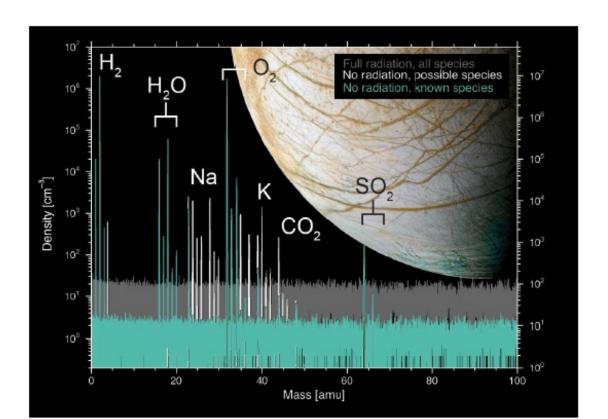


JUICE Payload


- Narrow-angle camera
- Vis-near-IR imaging spectrometer
- UV spectrograph
- Sub-mm wave instrument
- Laser altimeter
- Ice-penetrating Radar
- Radio science experiment
- Very Long Base Interferometry
- Plasma environmental package
- Radio & Plasma Wave instrument
- Magnetometer



Interplanetary Trajectory: Mars-Earth Gravity Assist (MEGA)


- Minimum solar distance is 0.82 AU
- No Venus flyby provides Flight System simplifications
- 5.5 year time-of-flight
- 2025 EMEGA and 2026 MEGA available as backup launch opportunities

Instrument	Institution
EIS Europa Imaging System	APL
E-THEMIS Europa Thermal Emission Imaging System	ASU
Europa-UVS Europa Ultraviolet Spectrograph	SwRI
MISE Mapping Imaging Spectrometer for Europa	JPL
REASON Radar for Europa Assessment & Sounding: Ocean to Near-surface	UTIG/JPL

INSTRUMENTS

Measurements expected by a Neutral gas and Ion Mass spectrometer: Thermal neutrals and ions (< 5 eV); Mass range: 1-1000 amu; $M/\Delta M=1100$; Sensitivity: 2 cm-3 (~10⁻¹⁶ mbar)

Future missions at Saturn

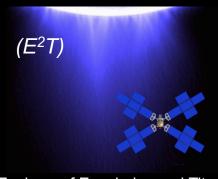
TITAN EXPLORER

Some of the proposed Titan exploration

Titan Explorer (Lorenz et al. 2007)

TSSM: Balloon, lander & orbiter (Coustenis et al. 2009)

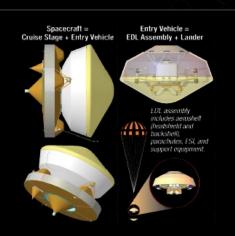
AVIATR /plane (Barnes et al. 2010)


Journey to Enceladus & Titan (Sotin et al., 2011)

Titan Aerial Explorer

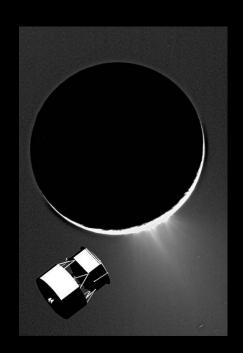
TIME: Lake lander (Stofan et al. 2013)

Explorer of Enceladus and Titan [Mitri et al. 2017]

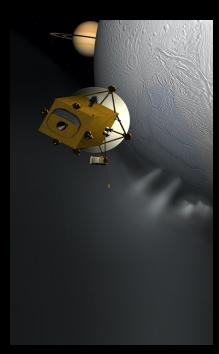

Dragonfly

- High mass and prebiotic molecules
- Proportion of C,H,N,O atoms
- Atmospheric p, T, wind and meteorolgogy
- Ground properties (porosity, humidity, dielectric)
- Images

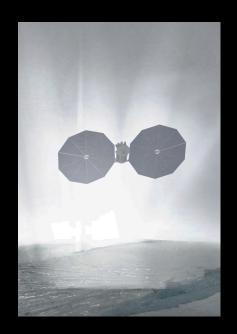
Mission elements


Rotorcraft Lander Flight configuration with HGA stowed

> Launch in 2027 Arrival in 2034

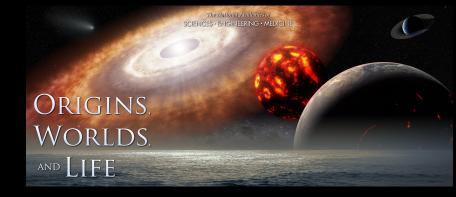

Titan after *Cassini & Dragonfly* science objectives Missing insights on :

- global-scale geological history
- origin and evolution of the polar seas
- atmospheric seasonal cycle and chemical processes
- long-term atmospheric evolution and stability (in particular at the poles)
 - What are the dominant escape processes at Titan's exobase, how do they vary with Titan's magnetospheric environment, and what is the fate of escaping molecules?
 - What is the nature of the Saturn magnetosphere-Titan ionosphere interaction and which plasma processes contribute to atmospheric escape?
 - Is the atmosphere in a steady-state, with on-going methane replenishment, or will it suffer long-term changes or collapse after methane depletion?
 - What chemical pathways synthesize complex organic molecules in Titan's atmosphere?
 - What chemistry and microphysics produce organic aerosols and clouds in the atmosphere?
 - How fast do erosive processes act to obliterate surfaces features, including impact craters?
 - How symmetric are the physical and chemical responses to Titan's seasons, and do liquids eventually migrate between hemispheres on long timescales leaving a climate record?
 - What is the variability of composition between the lakes and seas, as well as surface terrains?
 - Is there a vast, subsurface network of 'alkanofers' connecting the seas, acting as a reservoir for atmospheric methane?
 - Does Titan have any internal geophysical activity (tectonic, seismic, cryovolcanic)?
 - Do organic compounds from the atmosphere enter the subsurface ocean, producing a potentially habitable environment?


Future mission concepts to Enceladus


Enceladus Plume Sample Return

Enceladus Orbiter



Saturn
Orbiter/Multiple
Enceladus Flybys

Moons of the Giant Planets. Exploring the issues of habitability of ocean worlds, searching for biosignatures, and studying the connection of moon interiors, near-surface environments, and the implications for the exchange of mass and energy into the overall moon-planet system. This theme follows the science from Cassini-Huygens and expected scientific return from JUICE.

Origins, Worlds, and Life A Decadal Strategy for Planetary Science and Astrobiology 2023-2032

Chapter 13 QUESTION 10: DYNAMIC HABITABILITY (extract)

- Determine whether there are modern habitable environments in atmospheres by characterizing chemistry, including organic molecules, in the atmospheres
- Determine the complexity attained by organic chemistry in Titan's atmosphere, its sources and sinks, and its role in producing a potentially habitable environment by entering the subsurface ocean, through in situ and remote spectral imaging and mass spectrometry investigations.
- Orbilander will analyze fresh plume material from orbit and during a 2-year landed mission. Its main science objectives are:
 (1) to search for evidence of life; and (2) to obtain geochemical and geophysical

context for life detection

experiments.