Sn attenuation: Sarkar et al., 2022

2-D Sn attenuation tomography of Arunachal Himalaya

Sukanta Sarkar^{1*}, Chandrani Singh¹, M. Ravi Kumar², Ashwani Kant Tiwari¹, Arun Kumar Dubey¹ & Arun Singh¹,

¹ Department of Geology and Geophysics, Indian Institute of Technology Kharagpur, Kharagpur, India ² National Geophysical Research Institute, Hyderabad, India

Contact: Sukanta Sarkar → sukantaagp@iitkgp.ac.in

TS3.1/EGU22-4446: "Seismic imaging and characterization of crustal faults"

Sarkar et al., 2022

Objective:

To formulate a 2-D Q_{Sn} tomographic model to investigate the uppermost mantle shear wave Q and its implications on the uppermost mantle's rheology and deformation beneath Arunachal Himalava.

- Seismically active region
- EHS is a highly deformed region where structural, drainage and tectonic units change from nearly E-W striking to N-S direction.
- There are three maior thrust faults (MCT: Main Central Thrust. MBT: Main Boundary Thrust and MFT: Main Frontal Thrust).

Fig. 1: Topography map of Arunachal Himalaya and surrounding regions. The red inverted triangles denote the location of seismometers.

Fig. 2: Previous attenuation study across the Himalaya and Tibet. Low Q_p and Q_s values and Inefficient Sn propagation reported previously in Tibet region.

Sn attenuation: Data Sarkar et al., 2022

Q_{Sn} analysis

Sn-wave attenuation:

- Seismic attenuation: dissipation of seismic wave energy as they propagate through the medium
- Attenuation results in amplitude decay of the seismic waves
 - Geometrical spreading
 - Intrinsic attenuation (Anelastic attenuation)
 - Scattering attenuation (Elastic attenuation)
- Attenuation is measured by the quality factor (Q).
- Q is a dimensionless quantity and is defined as,

$$Q = \frac{2\pi E}{\delta E} \tag{1}$$

where E is is the energy of the seismic wave

- Q is inversely related with attenuation strength
 - ► High attenuation low Q value
 - Low attenuation high Q value

Sn phase:

Method

Results

- Travels through uppermost mantle above the asthenospheric low-velocity layer
- ► Travels through both the continental and oceanic paths
- Velocity: 4.1-4.8 km/sec

Fig. 3: The cartoon illustrates source-to receiver ray-paths of the Sn and other phases.

References

Sn attenuation: Data Sarkar et al., 2022

Data

- seismic stations. AP network. Arunachal Pradesh, 2013 - 2014
- Magnitude $(m_b) > 4.0$
- Epicentral distance = 2° to 15° and focal depth < 50 km.

Main Processing Steps:

- Remove instrument response
- Sn propogation efficiency check
- Bandpass filtering (0.1 5 Hz) of vertical component Sn-phases efficient waveforms
- Spectral amplitude calculation of signal (Sn-phase) and noise (pre-Pn phase) through FFT technique with 15% cosine tapering
- Applying Two Station Method approach of Zhao et al. (2015) to compute interstation Q_{Sn} values
- Applying back projection technique for Q_{Sn} tomography.

Previous Study

Fig. 4: Map showing events distribution used in this study.

Velocity window

- Pn velocity window 8.0 km/s to 7.9 km/s.
- Pg velocity window 6.8 km/s to 5.8 km/s.
- Sn velocity window 4.8 km/s to 4.1 km/s.

Fig. 5: Efficient and Blocked seismograms inspected at: Band (0.5 - 5 Hz), High (0.5 - 2 Hz) and low (0.1 - 0.5 Hz) pass filter.

Sn: Efficient, Inefficient, and Blocked Raypaths

Sn attenuation: Method Sarkar et al., 2022

 Bandpass filtering (0.1 - 5 Hz) of the vertical component Sn-phases efficient waveforms

- Geometrical spreading correction
- Signal (Sn-phase) and equal time noise window (pre-Pn waveform) amplitude spectra are computed through FFT with 15% cosine tapering
- Station pairing corresponding to one event
- ▶ Interstation distance ≥150 km
- Angle between source and two station<15°
- ► SNR≥2
- ► The inter-station uppermost mantle Q value for the near station S1 to far station S2 for an event E is

$$\int_{R1}^{R2} \frac{d\Delta}{Q(f)} = \frac{v}{-\pi f} ln \left[\frac{A_{52}(f)}{A_{51}(f)} * \frac{G(\Delta_{51}, f)}{G(\Delta_{52}, f)} \right] \quad (2)$$

$$Q(f) = Q_0 f^{\eta} \quad (3)$$

Fig. 6: The cartoon illustrates the simplified concept of the Two Station Method along with source-to-receiver ray-paths of the Sn and other phases.

Two station geometry

References

Results

Fig. 7: Example of Q_{Sn} estimation using the Two Station Methodology (TSM) of Sn wave for station pair RILU – DEED for an event6 (origin time: 22/11/2014 08:55:26.6, latitude: $+30.34^{\circ}$, longitude: $+101.74^{\circ}$, magnitude: 5.4).

Results

Fig. 8: The figure shows the inter-station raypaths coverage map of the study area. We have 425 inter-station raypaths after the TSM analysis.

References

Fig. 9: The map shows the two-dimensional Sn attenuation tomography of the region. The model is obtained at 1 Hz reference frequency with a cell size of $1^{\circ} \times 1^{\circ}$.

Sn attenuation: References Sarkar et al., 2022

- Aki K.: Scattering and attenuation of shear waves in the lithosphere. Journal of Geophysical Research: Solid Earth 85(B11):64966504, 1980
- Hearn T.M., Wang S., Pei S., Xu Z., Ni J.F., and Yu Y.: Seismic amplitude tomography for crustal attenuation beneath China Geophysical Journal International 174, 223-234, 2018
- Li C, D. van der Hilst Robert, S. Meltzer Anne, E. and Engdahl Robert.: Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth and Planetary Science Letters 274, 157168, 2008
- Royden, L. H., Burchfiel, B. C., King, R. W., Wang, E., Chen, Z., Shen, F., and Liu, Y.: Surface deformation and lower crustal flow in eastern Tibet, Science, 276, 788790, 1997.
- Singh A, Saikia D, Kumar M. R.: Seismic Imaging of the crustal beneath Arunachal Himalaya. Journal of Geophysical Research: Solid Earth, 126, e2020 JB020616, 2020
- Zeitler, P. K., Meltzer, A. S., Brown, L., Kidd, W. S., Lim, C., and Enkelmann, E.: Tectonics and topographic evolution of Namche Barwa and the easternmost Lhasa block, Tibet. Toward an Improved Understanding of Uplift Mechanisms and the Elevation History of the Tibetan Plateau: Geological Society of America Special Paper, 507, 2014.
- Xu, Q., Zhao, J., Pei, S., Liu, H.: Imaging lithospheric structure of the eastern Himalayan syntaxis: New insights from receiver function analysis, Journal of Geophysical Research: Solid Earth, 118, 23232332, 2012.
- Zeitler, P. K., Meltzer, A. S., Brown, L., Kidd, W. S., Lim, C., and Enkelmann, E.: Tectonics and topographic evolution of Namche Barwa and the easternmost Lhasa block, Tibet. Toward an Improved Understanding of Uplift Mechanisms and the Elevation History of the Tibetan Plateau: Geological Society of America Special Paper, 507, 23, 2014.
- Zhao, L.F., Xie, X.B., Tian, B.F., Chen, Q.F., Hao, T.Y. and Yao, Z.X.: Pn wave geometrical spreading and attenuation in Northeast China and the Korean Peninsula constrained by observations from North Korean nuclear explosions, Journal of Geophysical Research: Solid Earth, 120, 75787571, 2015.

References