

Magmatic evolution of Girnar volcano-plutonic complex of Deccan Traps, India: Sr-Nd-Pb-Hf isotopic evidence of multiple sources

Mahesh Halder^{1*}, Debajyoti Paul¹, and Andreas Stracke²

¹Department of Earth Sciences, Indian Institute of Technology Kanpur, Kanpur 208016, India ²Westfälische Wilhelms-Universität, Institut für Mineralogie, Münster, Germany

*Correspondence email: maheshh@iitk.ac.in

EGU General Assembly 2022

Session: GMPV8.1 Abstract ID: EGU22-446

Distribution of Silicic rocks in the Deccan Traps

70°30'0"E 70°33'0"E 70°36'0"E Gir 209 Gir 235 Gir 213 Gir 214 Silicic rock Syeno-diorite Gabbro Basalt

S.

Map of Girnar Hill is showing mafic and silicic rocks.

Major and Trace elements variation and Rhyolite-MELTs modelling

> 74 to 88% fractional crystallization of gabbroic melt under dry conditions can produce melt similar to mafic dykes and syeno-diorites.

➤ REE pattern of silicic rocks and associated mafic rocks of Girnar Complex of the Deccan Traps.

Isotopic composition of Silicic rocks

- Mafic rocks plot close to the Bulk Silicate Earth (BSE) or mantle end members composition.
- Isotopic composition of silicic rocks plots close the average Upper Continental Crust (UCC).

Source of Mafic rocks: Trace elements modelling

~9% and ≤5% batch melting of the source can generate patterns of alkaline gabbro and syeno-diorite respectively.

➤ 50 to 80% fractional crystallization can generate compositional range of syeno-diorite and mafic dykes.

Source of Mafic rocks: Trace elements modelling

Depleted MORB (DMM): Salters and Stracke (2004).

Mineralogy: 57% olivine, 28% orthopyroxene, 13% clinopyroxene and 2% spinel (Workman and Hart, 2005).

Partition coefficient: Workman and Hart (2005).

- ➤ ≤ 5% melting of the DMM source can produce the REEs pattern of basalt.
- ~20% melting of DMM source can produce the gabbro.

Source of Silicic rocks: AFC modelling

Mantle ned member: Ambenali Formation of the Deccan Traps (87 Sr/ 86 Sr_i = 0.7044, $\epsilon_{Nd(i)}$ = +4.5, Sr = 217 ppm, Nd = 20 ppm; Chandra et al., 2019).

Crustal end-member: Granite of Indian Shield (87 Sr/ 86 Sr_i = 0.8204, $\epsilon_{Nd(i)}$ = -41, Sr = 225 ppm, Nd = 84 ppm; Peng et al., 1994). D_{Sr} = 1 and D_{Nd} = 0.068 (Cucciniello et al., 2014).

➤ Silicic rocks formed due to assimilation of continental crust with mantle-derived melt via AFC process.

Summary and Conclusions

- Alkaline group reveals approximately **9% partial melting of a spinel lherzolite** source with subsequent **74 to 88% fractional crystallization** of olivine, clinopyroxene, plagioclase, spinel, K-feldspar, and amphibole produces the geochemical patterns observed for syeno-diorite and mafic dyke.
- ➤ Tholeiitic basalt and gabbro could be generated from 5% and 20% melting, respectively, of a depleted mantle source.
- > Distinct isotopic composition of silicic rocks and AFC modelling indicate assimilation of continental crust with mantle-derived melt.

Contact for enquiries and suggestions:

Mahesh Halder (<u>maheshh@iitk.ac.in</u>, <u>maheshhalder@gmail.com</u>) Department of Earth Sciences, IIT Kanpur, India