

SINGLE-FREQUENCY GNSS-IR FOR ESTIMATING SNOWPACK HEIGHT WITH CONSUMER GRADE RECEIVERS AND ANTENNAS

Giulia Graldi*, Simone Rover, Alfonso Vitti
Department of Civil, Environmental and Mechanical Engineering, University of Trento, Italy

EGU22-4573 - SESSION CR2.1 - 25/05/2022 Geophysical and in situ methods for snow and ice studies

GNSS-R: BACKGROUND

https://www.fieldbee.com

GROUND BASED

https://doi.org/10.5194/hess-24-3573-2020

GNSS Satellite GNSS Receiver

SPACE BASED

GNSS-R: BACKGROUND

https://www.fieldbee.com

SPACE BASED

GNSS-IR: BACKGROUND

https://www.fieldbee.com

INTERFEROMETRIC PATTERN TECHNIQUE (ITP)

SIGNAL TO NOISE RATIO (SNR)

GNSS-IR: BACKGROUND

https://www.fieldbee.com

GNSS-IR

GEODETIC GRADE INSTRUMENTS

GNSS-IR: BACKGROUND

https://www.fieldbee.com

GNSS-IR

GEODETIC GRADE INSTRUMENTS

... CONSUMER GRADE INSTRUMENTS?

STUDY AREA

Trentino, Italy Lavarone Plateau, 1400 m

STUDY AREA

Trentino, Italy

Lavarone Plateau, 1400 m

Smooth horizontal snowpack surface

DATA ACQUISITION

GEODETIC GRADE INSTRUMENTS March 2018

CONSUMER GRADE INSTRUMENTS February 2019

DATA ACQUISITION

GEODETIC GRADE INSTRUMENTS March 2018

Antenna	Leica SmartAntenna ATX1230GG				
Receiver	Leica GX1230GG				
Δh	I3 cm				
Duration	I20 mins				
SNR resolution	0.25 dB				
Frequency	GPS L1, GPS L2				

CONSUMER GRADE INSTRUMENTS February 2019

Antenna	 Tallysman TW4721 u-blox ANN-MS 				
Receiver	u-blox NEO-M8T				
Δh	I5 cm				
Duration	90 mins				
SNR resolution	0.25 dB				
Frequency	GPS L1				

$$SNR^2 = A_D^2 + A_R^2 + 2A_DA_R\cos\Delta\phi$$

$$\Delta \phi = \frac{2\pi}{\lambda} \, 2h \, \sin(\theta)$$

$$SNR^2 = A_D^2 + A_R^2 + 2A_DA_R\cos\Delta\phi$$

$$\Delta \phi = \frac{2\pi}{\lambda} 2h \sin(\theta)$$

$$SNR^2 = A_D^2 + A_R^2 + 2A_DA_R\cos\Delta\phi$$

$$\Delta \phi = \frac{2\pi}{\lambda} \, 2h \, \sin(\theta)$$

SPECTRAL ANALYSIS

$$h = \frac{\lambda f_M}{2\left[\sin(\theta_{max}) - \sin(\theta_{min})\right]}$$

 f_M is the MULTIPATH FREQUENCY

SNR written as a function of the elevation angle $(\sin \theta)$

- ➤ Uneven series
- ➤ Lomb Scargle Periodogram for spectral analysis

SPECTRAL ANALYSIS

$$h = \frac{\lambda f_M}{2\left[\sin(\theta_{max}) - \sin(\theta_{min})\right]}$$

 f_M is the MULTIPATH FREQUENCY

RESULTS: LOMB SCARGLE PERIODOGRAM

CONSUMER GRADE

RESULTS: REFLECTOR HEIGHT

	Geodetic (L1, L2)		Consumer (Tallysman)		Consumer (u-blox)	
Heights [m]	h0	hl	h0	hl	h0	hl
Measured	1.29	1.16	1.71	1.56	1.71	1.56
Estimated (mean)	1.32	1.18	1.83	1.51	1.81	1.52
Error	-0.03	-0.02	-0.12	0.05	-0.01	0.04
N° estimations	5	7	4	5	2	6

- Extend the duration of data acquisition, in order to have more SNR time series to analyze
- Individuate more selection criteria based on the Fresnel reflection zones and on the LSP results

REFERENCES

Rover, S.; Vitti, A. GNSS-R with Low-Cost Receivers for Retrieval of Antenna Height from Snow Surfaces Using Single-Frequency Observations. Sensors **2019**, *19*, 5536. https://doi.org/10.3390/s19245536

VanderPlas, J.T., Understanding the Lomb-Scargle Periodogram, The Astrophysical Journal Supplement Series, Volume 236, Number 1, 2018, 10.3847/1538-4365/aab766

Larson, K.M.; Gutmann, E.D.; Zavorotny, V.U.; Braun, J.J.; Williams, M.W.; Nievinski, F.G. Can we measure snow depth with GPS receivers? Geophys. Res. Lett. **2009**, 36, doi:10.1029/2009gl039430.

Nievinski, F.G.; Larson, K.M. Inverse modeling of GPS multipath for snow depth estimation, Part I: Formulation and simulations. IEEE Trans. Geosci. Remote Sens. **2014**, 52, 6555–6563, doi:10.1109/tgrs.2013.2297681.

THANK YOU FOR YOUR KIND ATTENTION:)

giulia.graldi@unitn.it

METHOD: DATA SELECTION

Chinmaya S Rathore, CoG,IIFM

Azimuth: 90° - 270°

Elevation: 5° - 25°

