
CAR MAX-DOAS MEASUREMENTS DURING GMAP 2021

....

AS3.22 - EGU22-4586

Steffen Dörner, Kezia Lange, Andreas Richter, Michel van Roozendael, Thomas Wagner and many others...

Abstract

GMAP 2021 CAMPAIGN DOAS TYPE REMOTE SENSING MEASUREMENTS

- ► 04.10. to 17.10.2021 Instrument Validation
- ► 18.10. to 25.11.2021 Core Campaign

Aircraft (GCAS) Stationary MAX-DOAS Car MAX-DOAS Satellite (GEMS)

- Tropospheric VCD comparison
- Intra-Pixel-Variability
- Seoul City emissions
- Characterisation of tropospheric profiles

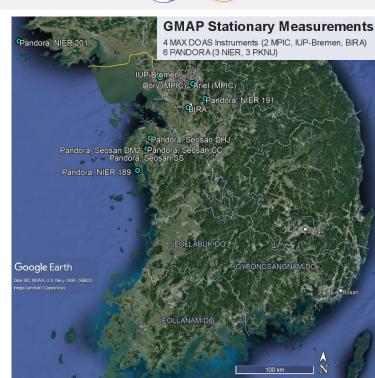
PKNU/NIER Pandora

BIRA MAX-DOAS

MPIC MAX-DOAS

IUP Bremen MAX-DOAS

GMAP 2021 CAMPAIGN DOAS TYPE REMOTE SENSING MEASUREMENTS



- ► 04.10. to 17.10.2021 Instrument Validation
- ► 18.10. to 25.11.2021 Core Campaign

Aircraft (GCAS) Stationary MAX-DOAS Car MAX-DOAS Satellite (GEMS)

- Tropospheric VCD comparison
- Intra-Pixel-Variability
- Seoul City emissions
- Characterisation of tropospheric profiles

GMAP 2021 CAMPAIGN DOAS TYPE REMOTE SENSING MEASUREMENTS

- ► 04.10. to 17.10.2021 Instrument Validation
- ► 18.10. to 25.11.2021 Core Campaign

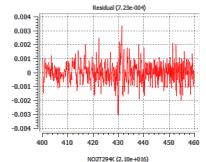
Aircraft (GCAS) Stationary MAX-DOAS Car MAX-DOAS Satellite (GEMS)

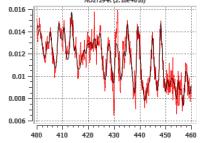
- Tropospheric VCD comparison
- Intra-Pixel-Variability
- Seoul City emissions
- Characterisation of tropospheric profiles

Oct 2021 Group Picture

Nov 2021 Group Picture

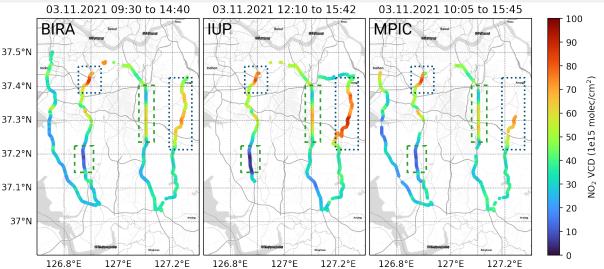
NITROGEN DIOXIDE FIT





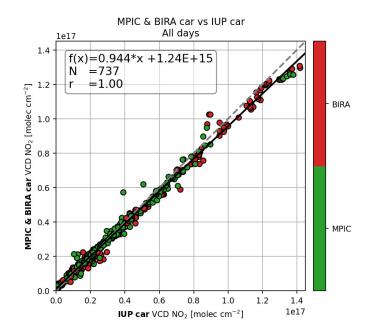
- ► Integration Time BIRA: 10 s IUP Bremen: 10 s MPIC: 15 s
- Constant reference on 22.10.2021 approx. 09:38 to 09:42 UTC
- Trop. VCD calculation according to Wagner et al., 2010
- Stratospheric VCD taken from climatology (B3dCTM for 22.10.2021)
- ► Fit Settings (MPIC)

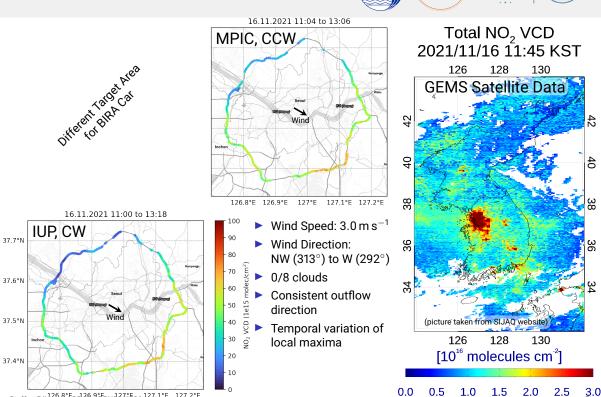
400 to 460 nm NO2T294K - Vandaele et al., 1998 H2OT293K - Lampel et al., 2015 03T223K - Serdyuchenko et al., 2014 04T293K - Thaman and Volkamer, 2013 Polynomial 5th degree Offset constant + first order Shift against constant reference



CAR MAX-DOAS 03.11.2021 BLUE BOX (GCAS COMPARISON)

- Generally good agreement between all instruments
- Some high signals appear quite stationary (blue dotted)
- Others vary in time (green dashed)

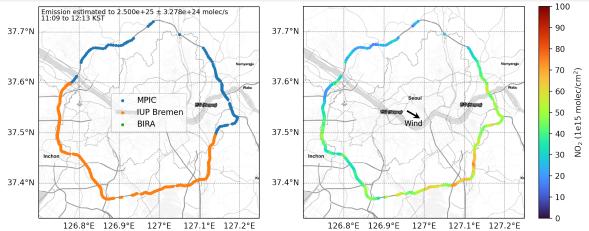

CAR MAX-DOAS - VALIDATION



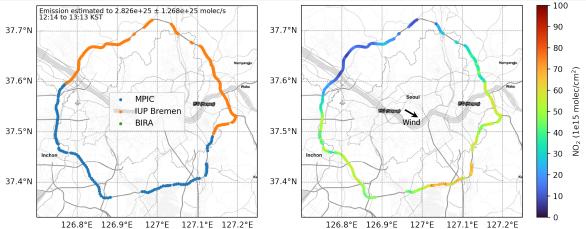
- Collocation of all three instruments if they are at the same location at the same time (Δt < 2 min, Δs < 50 m)
- Shown are all data points from all measurement days which fulfill the collocation criteria
- Good agreement between all data sets, remaining difference could be attributed to different fit settings (IUP Bremen, MPIC, BIRA)
- Variations seen in maps originating from temporal evolution of NO₂ concentration

CAR MAX-DOAS 16.11.2021 SEOUL CITY EMISSION

Steffen Dörner i AS3.22 i FGII 2774 E86 127.1°E 127.2°E


CAR MAX-DOAS - NEW APPROACH 16.11.2021 SEOUL CITY EMISSION

- Good agreement between instruments enable a direct combination of all three data sets
- Combining different instruments yields more emission estimates per day
- Shorter time per "circle" improves method
- Could be improved further if cars don't start at the same point


CAR MAX-DOAS - NEW APPROACH 16.11.2021 SEOUL CITY EMISSION

- Good agreement between instruments enable a direct combination of all three data sets
- Combining different instruments yields more emission estimates per day
- Shorter time per "circle" improves method
- Could be improved further if cars don't start at the same point

CAR MAX-DOAS EMISSION SUMMARY, PRELIMIARY RESULTS (!)

Date	Time Range (KST)	Emission (10 ²⁵ n	nolec/s)
22.10.2021 (1)	11:02 to 12:21	1.38 ± 0.12	H
22.10.2021 (2)	12:22 to 13:26	$\textbf{1.89}\ \pm\ \textbf{0.04}$	Н
22.10.2021 (3)	15:00 to 16:48	$\texttt{0.68}\pm\texttt{0.16}$	
27.10.2021 (1)	10:02 to 11:37	$\textbf{1.33}\pm\textbf{0.33}$	
27.10.2021 (2)	11:44 to 13:31	$\texttt{1.66}\ \pm\ \texttt{0.12}$	H
27.10.2021 (3)	14:50 to 16:12	$\texttt{1.10} \pm \texttt{0.42}$	
16.11.2021 (1)	11:09 to 12:13	$\texttt{2.67}\pm\texttt{0.02}$	H
16.11.2021 (2)	12:14 to 13:13	$\texttt{2.65}\pm\texttt{0.91}$	
			.0 1 2 3 NO ₂ (molec / s) 1e25
			NO_2 (molec / s) 1e25

- Error estimation only includes emission calculation uncertainty
- ► For optimal measurement conditions clear days with stable wind conditions (not calm) are chosen
- DOAS measurements are easier to interpret (simpler light path)
- ▶ Background NO₂ levels are reduced (clean influx)

SUMMARY

▶ Mobile measurements by BIRA/MPIC/IUP Bremen 12 measurement days with \approx 100 h with each instrument

$20.10.2021 \approx 8 \text{h}$ (Seoul Inner City)	03.11.2021 ≈
$22.10.2021 \approx 8 \text{h}$ (Seoul City Emission)	05.11.2021 a
$27.10.2021 \approx 9 \text{h}$ (Seoul City Emission)	12.11.2021 ≈
$28.10.2021 \approx 8 \text{h}$ (Pyeongtaek)	14.11.2021 ≈
01.11.2021 \approx 8 h (Seoul Inner City)	16.11.2021 ≈
$02.11.2021 \approx 8 \text{h}$ (Seoul Inner City)	$17.11.2021\approx$

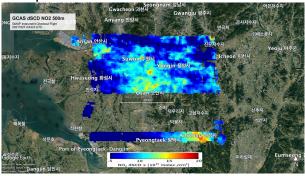
 $03.11.2021 \approx 9 \text{ h (GCAS, blue box)}$ $05.11.2021 \approx 10 \text{ h (GCAS, red box)}$ $12.11.2021 \approx 9 \text{ h (GCAS, red box)}$ $14.11.2021 \approx 8 \text{ h (GCAS, blue box)}$

6.11.2021 \approx 6 h (Seoul City Emission)

 $17.11.2021 \approx 9 \text{ h (GCAS, red box)}$

Stationary measurements from 19th Oct until today

OUTLOOK



Comparison of mobile measurements to GCAS measurements

(Jayne Boehmler, SIJAQ website, preliminary, test flight on 27.10.2021)

- Deriving surface concentration/profiles/VCD for stationary measurements
- ▶ Comparison of stationary measurements to HUFS aircraft in-situ data
- Analysis of HCHO and SO₂ for stationary and mobile measurements

CONCLUSION

- ► Consistent results for stationary and mobile measurements
- Successful campaign provides a solid data set for satellite validation
- Seoul Metropolitan Area appears to be a strong source of NO₂
- ▶ **Remark:** Possible selection bias for NO₂ emissions of Seoul city
- ▶ As to be expected: Near NO₂ sources significant temporal variation and horizontal gradients were found

Thanks for your attention.

Special thanks to: Kang-Ho Bae, Tim Bösch, Lim-Seok Chang, Hyunkee Hong, Leon Kuhn, Bianca Lauster, Haejung Lee, Simona Lukosiunaite, Alexis Merlaud, Sihyun Nam, all drivers and so many others