

Landscape analysis of runoff and sedimentation based on land use/cover change in two typical watersheds on the Loess Plateau

Xiaojun Liu
Ningxia University
liuxiaojun.lxj@163.com
26th May, 2022

CONTENT

Introduction

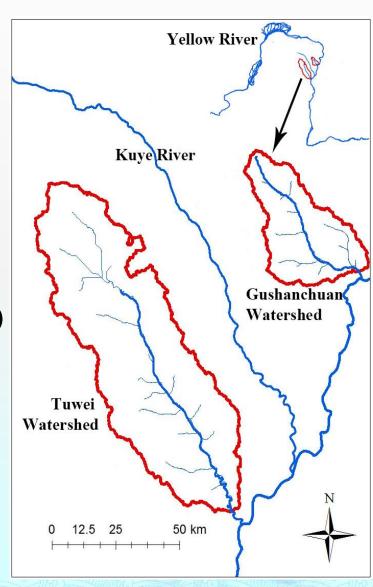
Material & Methods

Results

Introduction

- Water & soil loss, land use change, ecological functions of landscape patterns.
- Loess Plateau, semi-arid, water-limited, particularly sensitive to a deterioration in environmental quality
- Quantitative relationships between landscape metrics (LMs), and water and soil loss is crucial.

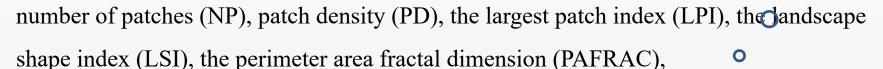
Materials and Methods


DEM dataset: the Geospatial Data Cloud, the Computer Network Information Center, Chinese Academy of Sciences (http://www.gscloud.cn).

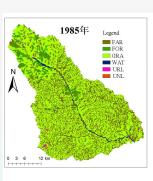
Land use dataset: provided by the Cold and Arid Regions Science Data Center at Lanzhou, China (http://westdc.westgis.ac.cn) analyzed by ArcGIS

Annual runoff and sedimentation:

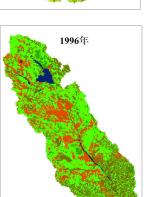
1985-2010


Tuweihe (Tu) watershed & Gushanchuan (Gu) watershed

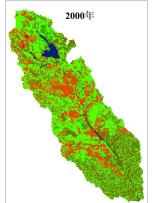
Materials and Methods

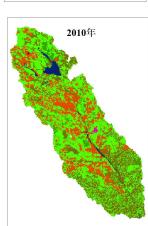

Landscape metrics (LMs): Fragstats 3.3

Patch level; Class level; landscape level



the contagion index (CONTAG)
the patch cohesion index
(COHESION), the landscape
division index (DIVISION),
Shannon's diversity index
(SHDI), and Shannon's
evenness index (SHEI).





Gu watershed

Results-land use changes

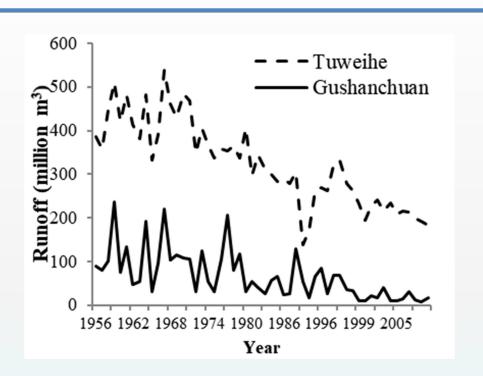
Land use characteristics in the study area (km²)

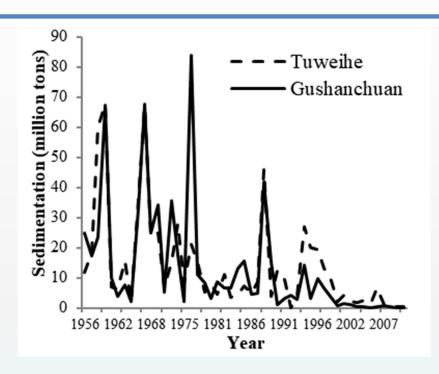
Land use		Tuweihe v	Gushanchuan watershed					
	1985	1996	2000	2010	1985	1996	2000	2010
FAR	1129.26	1134.52	1116.35	1086.42	410.49	405.94	409.21	383.59
FOR	203.77	201.87	204.74	212.33	60.47	48.41	64.45	72.91
GRA	1681.02	2251.95	2124.38	2175.39	772.61	790.87	770.47	785.15
WAT	106.10	105.44	104.98	102.97	12.37	12.82	12.10	12.22
URL	8.70	8.62	9.03	18.65	6.12	4.51	6.32	8.53
UNL	1374.55	801.00	943.91	909.61	1.05	0.56	0.56	0.55

farmland (FAR), forest land (FOR), grassland (GRA), water (WAT), urban and rural land (URL), and unused land (UNL)

Grassland (GRA): the greatest proportion of the land cover

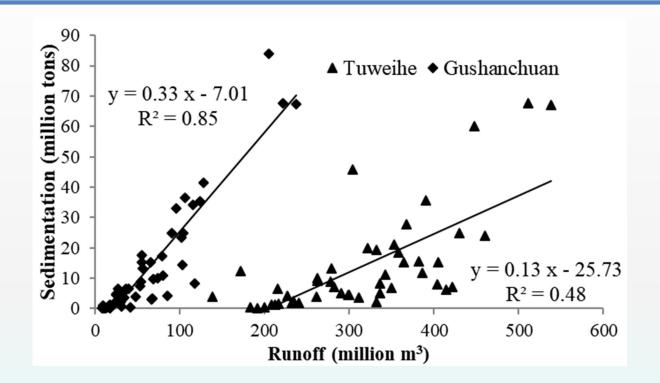
Unused land (UNL): had the highest transfer ratio, but farmland (FAR) area changed the most.


Results-Landscape Metrics


Land use characteristics in the study area (km²)

	Time	NP	PD	LPI	LSI	PAFRAC	CONTAG	COHESION	DIVISION	SHDI	SHEI
	1985	1393	0.31	20.30	36.48	1.60	36.47	97.79	0.91	1.32	0.734
Tu	1996	1332	0.30	41.04	35.32	1.58	39.82	98.72	0.80	1.24	0.690
watershed	2000	1343	0.30	37.39	36.16	1.58	38.46	98.60	0.83	1.27	0.706
	2010	1340	0.30	34.03	35.94	1.57	38.36	98.44	0.86	1.27	0.707
	1985	938	0.74	61.00	37.14	1.68	53.34	99.18	0.62	0.89	0.495
Gu	1996	909	0.72	62.50	36.34	1.69	55.22	99.21	0.61	0.85	0.476
watershed	2000	959	0.76	60.81	37.27	1.69	53.07	99.17	0.63	0.89	0.498
	2010	928	0.74	61.79	35.73	1.68	52.59	99.14	0.62	0.91	0.506

The landscape in the study area, Tu watershed especially, tended to become **regular**, **connected**, **and aggregated**. The landscape stability of the TU watershed was higher than that of the GU watershed.

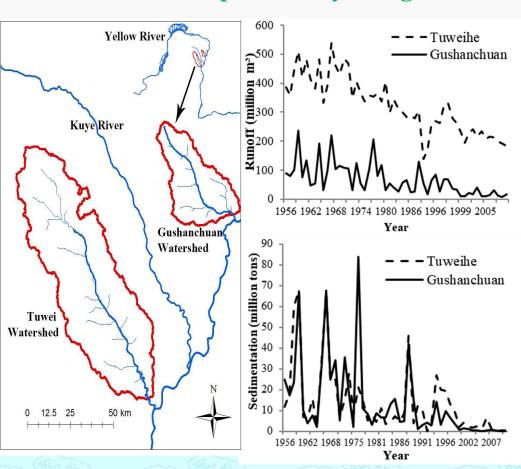

Results-variations of runoff and sedimenatation

MK test: runoff and sedimentation tended to decrease over time Runoff in the TU watershed (with a larger area) was higher than that in the GU watershed, but annual sedimentation was much the same.

Results-variations of runoff and sedimenatation

The sediment-carrying capacity of the runoff (i.e., the slope of the regression line) in the GU watershed was greater than that in the TU watershed.

Results-Response relationships between runoff, sedimentation, and LMs


	LMs	Regression equation	\mathbb{R}^2	Sig.
	PD	-4.457PD+5.010	0.916	0.003**
	SHAPE_AM	-0.1352SHAPE_AM+3.982	0.868	0.007**
	CONTAG	-0.113CONTAG+8.191	0.738	0.028*
	COHESION	-0.717COHESION+71.936	0.773	0.021*
Runoff	PRD	-334.76PRD+4.0689	0.840	0.01*
	SHDI	3.312SHDI-3.361	0.930	0.002**
	SIDI	9.788SIDI-5.135	0.915	0.003**
	SHEI	12.280SHEI-4.937	0.934	0.002**
	SIEI	9.808SIEI-5.588	0.916	0.003**
C	CONTAG	-0.006CONTAG+0.474	0.693	0.04*
Sedimentation	COHESION	-0.043COHESION+4.294	0.760	0.024*

More LMs were significantly (P < 0.05) or highly significantly (P < 0.01) correlated with annual **runoff**.

CONTAG & COHESION had direct impacts (P < 0.05) on sedimentation.

Discussion

- F Grain for Green Program particularly affected Loess Plateau
- Lower landscape stability & lager ratio of FAR caused more sedimentation

Discussion

SHEI & COHESION: the most significant factors affecting annual runoff and sedimentation

Dependent		Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.	Collinearity Statistics	
			В	Std. Error	Beta	•		Tolerance	VIF
	1	(Constant)	-4.937	0.876		-5.636	0.005		
	1	SHEI	12.280	1.630	0.967	7.534	0.002	1.000	1.000
runoff		(Constant)	25.492	6.921		3.683	0.035		
	2	SHEI	8.895	1.032	0.700	8.618	0.003	0.446	2.244
		COHESION	-0.292	0.066	-0.358	-4.403	0.022	0.446	2.244
sedimentation	1	(Constant)	4.294	1.184		3.627	0.022	3500	1
		COHESION	-0.043	0.012	-0.871	-3.554	0.024	1.000	1.000

Conclusion

- Annual runoff and sedimentation decreased with time because of vegetation restoration.
- Larger FAR area and lower landscape stability caused more sedimentation
- The LMs had more significant effects on runoff than that on sedimentation yield.
- ► Shannon's evenness index and the patch cohesion index were the key factors of influencing water and soil loss.

