Automated detection of gravitational instabilities by combining seismology, satellite data and machine learning - example over the European Alps.

Charlotte Groult, Clément Hibert et Jean-Philippe Malet

Institut | Terre & Environnement

de **Strasbourg** | ITES | UMR 7063

de l'Université de Strasbourg & CTS & REGE

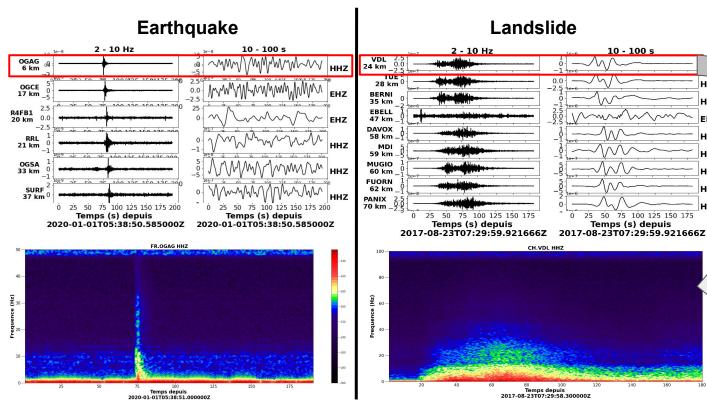
contact: charlotte.groult@unistra.fr

Introduction

Context

- Climate change : permafrost melt
 - Number and intensity of landslides increasing in high latitude/altitude area
- Need to document landslide activity (detection, localization, link with environmental factors)
- manage risks in mountain and ecosystems

Objectives


- Develop an automated method to detect, classify and localize landslides
 - combine seismic and satellite data with a machine learning approach
- Build a catalog of landslide activity in the past 20 years
- Use the catalog Explore correlations between landslide occurrences and environmental factors (weather, geology, slope...)

Event from ZAMG bulletin that occurred in Eck, Austria on 2018-05-07 4h18

Seismic data for a well documented instrumental catalog

- Large regional scale European Alps
- Data over long period (20 years)
- Exact date of occurrence

COMPONENT LANGE LA

Map of an event and station which record it

From time-domain to frequency-domain

Spectrogram : Time-frequency representation

HHZ

HHZ

EHZ

HHZ

HHZ

HHZ

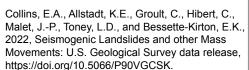
HHZ

Data Method - Detection Method - Classification Preliminary results Perspectives & conclusion

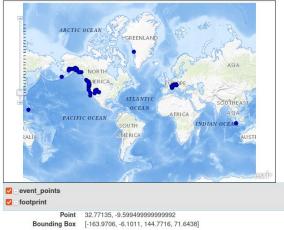
Database of known events that occurred in the Alps in the past 20 years

b to train and test my methods

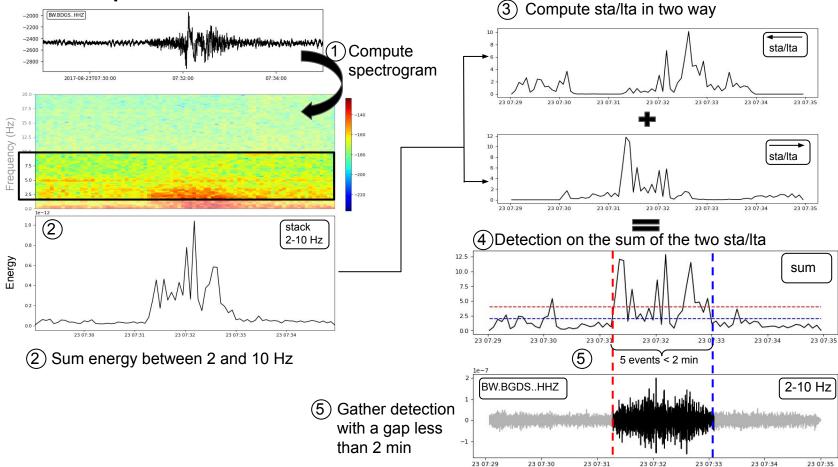
Landslides


2589 seismic signals generated by 68 events recorded by 547 stations since June 2002 sources: papers, media, ZAMG, Renass

map of known seismogenic landslides in the Alps since 2002


Collaboration with USGS

Public database : events recorded by seismic network in North America, the European Alps and Pacific Islands



Seismogenic Landslides and other Mass Movements

- Download as Google Earth file format (KML)
- Process feature with Geo Data Portal

Detection: Spectral method

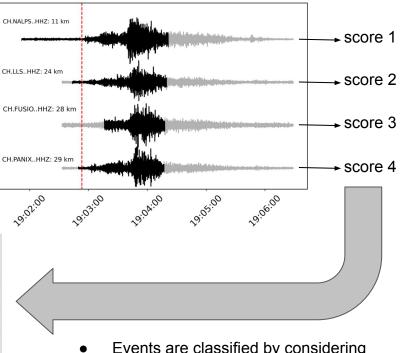
Classification: Random forest

Data

Compute model from the training set

BW.BGDS..HHZ 2-10 Hz Training set 23 07:33 23 07:29 23 07:30 23 07:31 23 07:32 23 07:34 23 07:35 computing features (F1, F2, ... Fx) Compute N decision trees **Features** Compare new (ex: length, waveform, ...) features to F8 (F2) (F4) (F15) (F8 (F3) (F9) (F3) (F1 (F12) (F4) the model F9 Each tree is computed from a F2 F3 F4 F5 F6 F7 F10 subset of the training set and Earthquake F11 randomly selected features at Landslide Landslide F12 each nodes F13 F14 F15 class = landslide F8 score landslide = 0.66

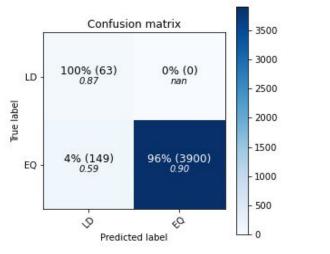
Classify a new sample

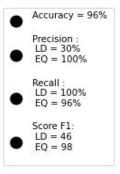

Perspectives & conclusion

Classification: Group signals by event and play with scores

One event generates signals on many stations around

steps processing chain	delete signals with low max/med and max/mean	detections ≥ 3 stations	score min	score max	median score	majority of votes	classification ≥ 2 stations	points (≥ 10)
1	1	2		3			4	
2	1		2			4		
3	1	2	3			4		
4	1	2	3	4				
5	1	2		3 (10 pts)	4 (7 pts)	5 (3 pts)		/
6	1	2		4 (7 pts)	5 (3 pts)	3 (10 pts)		/
7	1	2		5 (3 pts)	3 (10 pts)	4 (7 pts)		/




Perspectives & conclusion

- Events are classified by considering all signals that refer to it
- Many possibilities are investigated

Test of random forest classifier with the training set

- 50 % signals from the training set is used to build the model (forest of decision trees) - the rest is used to test the classifier
- Delete events with mean score < 0.6

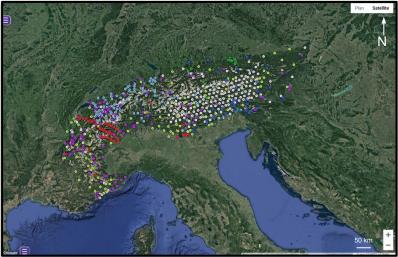
Test of random forest classifier on continuous data

 Run detection and classification on 34 days which include known events

Processing chain	Number of known events found / number of total events tested	Number of gravity events found on the 34 days tested
1	18 / 34	1333
2	13 / 34	262
3	18 / 34	1118
4	17 / 34	1211
5	22 / 34	2030
6	23 / 34	2634
7	22 / 34	2168

Method - Classification Perspectives & conclusion Data **Method - Detection** Preliminary results

Conclusion


Tests on training set provide a good identification rate (100 % for LD - 96% for EQ)

Results on continuous data need to be improved: Find a processing chain which properly classify all the known events and

limit false alarms

Perspectives

- Include satellite data: constrain localization and volume
- Apply the method on 20 years on the whole network
- Explore correlations between landslide occurrences and environmental factors (weather, geology, slope...)

Seismic network for 20 years processing

