Measuring Background Radiation with a Novel Ionisation Detector Aboard a North Atlantic Voyage

Justin Tabbett Karen Aplin, Susana Barbosa

SAIL aboard NRP Sagres

- From Açores to Lisbon 23rd 31st July 2021
- Instrumentation onboard
 - Nal(TI) scintillator gamma counter: 0.4-3 MeV
 - Microscintillator PiN detector: 0.4-3 MeV (terrestrially)
 - Biral SWS-050 visibility detector

Ionisation detector 1 cm3 Csl(TI) PiN photodiode Low power Small form factor ~5x11 cm

Wikipedia

Microscintillator ionisation detector

- Identified gamma peaks originating from Bi-214, K-40 and Tl-208
- Gamma peaks verified in lab calibration with radioactive sources (Aplin et al, 2017)
- Lab (University of Bristol, 162 hours)
- Normalised by run length

- Identified gamma peaks originating from Bi-214, K-40 and Tl-208
- Lab (University of Bristol, 162 hours)
- Normalised by run length
- Lab (lead castle, 161 hours)
 - Reduction in noise/background and in gamma peak heights

- Identified gamma peaks originating from Bi-214, K-40 and Tl-208
- Lab (University of Bristol, 162 hours)
- Normalised by run length
- Lab (lead castle, 161 hours)
 - Reduction in noise/background and in gamma peak heights
- SAIL (192 hours)
 - Reduction in low energy background,
 - Less reduction around K-40 peak

- Identified gamma peaks originating from Bi-214, K-40 and TI-208
- Lab (University of Bristol, 162 hours)
- Normalised by run length
- Lab (lead castle, 161 hours)
 - Reduction in noise/background and in gamma peak heights
- SAIL (192 hours)
 - Reduction in low energy background,
 - Less reduction around K-40 peak
- Lead castle and SAIL spectra both show reduction in low level background
 - Gamma radiation is lower over the ocean
- What about the Nal(Tl) gamma counter?

Nal(TI) gamma counter & visibility

- See a drop in gamma counts over the ocean
- Count rate is not constant
- Precipitation inducing an increase in gamma radiation
- However precipitation data is not available for this part of the voyage.
- Changes in visibility can be an indicator
- Filter by rapid changes in visibility

- SAIL (Visibility drop, 3.25 hours)
- Can see a composition of gamma increase
- Looking at response of all Bi-214 peaks as radon progeny
- See a higher count rate from Bi-214 peaks during visibility (precipitation) changes

Cosmic rays

- High energy peak caused by cosmic ray muons (CRM)
- Not a discrete energy since CMRs are minimum ionising particles
- Difference could be due to differences in pressure, temperature, latitude
- Specific cause of response remains unknown

In conclusion

- Csl(Tl) ionisation detector and Nal(Tl) gamma counter able to see a decrease in counts over the ocean vs on land
- Correlation between change in visibility (caused by rain) and increased gamma activity
- Difference in cosmic ray energy deposition

Many thanks to

SAIL team
A-Squared Technologies

Thank you for listening Are there any questions?

Please contact me at: jt16596@bristol.ac.uk

Nal(TI) gamma counter & visibility

Additional slide

- Find each minute where the visibility changes by 7.5 km
- Correlation about the leading edges of the features
- Driving force behind the change in visibility also causing the change in gamma activity

Additional slide

- Change in visibility due to precipitation
- Difficult to get high resolution weather data over the ocean
- ECMWF can provide total precipitation over a grid
- However:
 - Data is provided hourly
 - Spatial resolution may not be sufficient
- Next steps:
 - Look at periods where NRP Sagres was in land
 - Establish relationship between ECMWF data, local weather reporting, and visibility

Visibility drop validity

Additional slide

- How can I be sure that the peaks are higher and a not just the noise floor being incomplete?
- Compare a time window of the same length in the lead castle data set
- Find that for the higher energy Bi-214 peaks that the count rate is still higher

