

EVALUATING THE ADDED VALUE OF YOUNG WATER FRACTION FOR DETERMINING WATER TRANSIT TIMES IN DIVERSE CATCHMENTS

Arianna Borriero¹, Rohini Kumar², Tam. V. Nguyen¹, Jan H. Fleckenstein^{1,3}, and Stefanie Lutz⁴

^[1] Department of Hydrogeology, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany

^[2] Department of Computational Hydrosystems, Helmholtz-Centre for Environmental Research - UFZ, *Leipzig*, *Germany*

^[3] Bayreuth Centre of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany

^[4] Copernicus Institute of Sustainable Development, Department Environmental Sciences, Utrecht University, Utrecht, the Netherlands

PROBLEM STATEMENT

- Transit time distributions (TTDs) of streamflow are important descriptors of hydrological functioning and solute mobilization in catchments
- Transport models based on StorAge Selection (SAS) functions are a promising tool for characterizing non-stationary TTDs
- Model parameters are typically calibrated against observations of long-term and high-frequency tracer concentration in the inflow and outflows
- Economic and management effort to acquire tracer data with a sufficient temporal resolution → risk to hamper robust estimated *TTDs*

OUR QUESTION

Constraining parameters with alternative methods

OUR SOLUTION

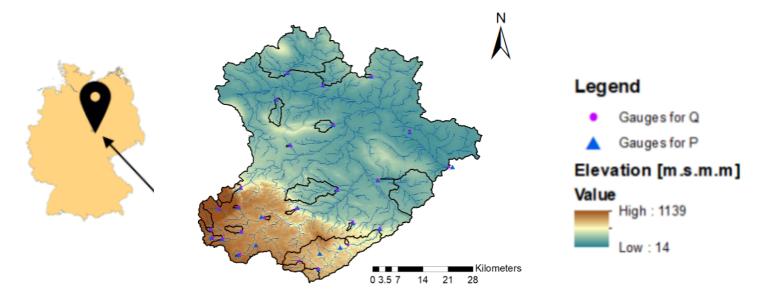
- The <u>young water fraction</u> (F_{yw}) is the average fraction of the streamflow that is younger than a specified threshold age which is roughly 2–3 months
- Advantages of using F_{yw}:
- → easy to retrieve from short-term and low-frequency tracer data
- directly estimated from the amplitude ratio of the cycles in stable water isotopes in precipitation and streamflow
- → alternative descriptor for TTDs
- → robust metrics under both spatially heterogeneous and non-stationary conditions
- → less prone to large aggregation bias than TTDs

RESEARCH GAP

• Relevance of F_{yw} as an additional indicator for improving catchment-scale flow and transport description in TTD modelling is not yet well established

OBJECTIVE

- Explore if and to what extent F_{yw} is valuable to infer model parameters and simulate TTDs in multiple contrasting sub-catchments
- Showcase if the effectiveness of F_{yw} in identifying TTDs is related to the catchment size, annual precipitation, flow rates, soil or vegetation
- Identify potentials and gaps in the use of F_{vw} in isotope-based TTD models


STUDY SITE

DATA

24 diverse sub-catchments in the Bode region, Germany

- Hydroclimatic data of precipitation (P), streamflow (Q) and evapotranspiration (ET)
- Observed oxygen isotopes ($\delta^{18}O$)

METHODS

ESTIMATION OF F_{vw}

- Input data: observed $\delta^{18}O$ in P and Q
- Equations (Kirchner, 2016a):
- \rightarrow Seasonal cycle in $\delta^{18}O$ in P and Q (‰):

$$\delta^{18}O_P = a_P \cdot \cos(2\pi f t) + b_P \cdot \sin(2\pi f t) + k_P$$
 (Eq. 1)
$$\delta^{18}O_S = a_S \cdot \cos(2\pi f t) + b_S \cdot \sin(2\pi f t) + k_S$$
 (Eq. 2)

where a (-) and b (-) are regression coefficients, t (decimal yr) is the time, f (yr⁻¹) is the frequency, and k (‰) is a constant describe the vertical offset of the isotope

- → Coefficients a and b are obtained through an iteratively re-weighted least squares (IRLS), a robust estimation that minimizes the influence of any potential outliers
- \rightarrow In estimating a_P and b_P , Eq. (1) was volume weighted with monthly cumulative precipitation to avoid giving undue leverage to low precipitation periods

• Output data:
$$F_{yw}(-) = \frac{\sqrt{a^2s + b^2s}}{\sqrt{a^2p + b^2p}}$$
 (Eq. 3)

Uncertainties in the calculated F_{yw} are expressed as standard errors (SEs) and are estimated using the Gaussian error propagation

METHODS

SIMULATION OF TTDs

- Input data: P, Q and ET + observed $\delta^{18}O$ in P and Q
- Equations (tran-SAS v1.0 model; Benettin and Bertuzzo, 2018):
- → Water age balance:

$$\frac{\delta S_T(T,t)}{\delta t} + \frac{\delta S_T(T,t)}{\delta T} = P(t) - Q(t) \cdot \Omega_Q(S_T,t) - ET(t) \cdot \Omega_{ET}(S_T,t)$$
 (Eq. 4)

where S_T (mm) is the age-ranked storage, and Ω_Q (-) as well as Ω_{ET} (-) are the SAS functions for Q and ET

$$\rightarrow$$
 SAS beta function $\omega(P_s(T,t),t) = \frac{P_s(T,t)^{\alpha-1} \cdot (1-P_s(T,t))^{\beta-1}}{B(\alpha,\beta)}$ (Eq. 5)

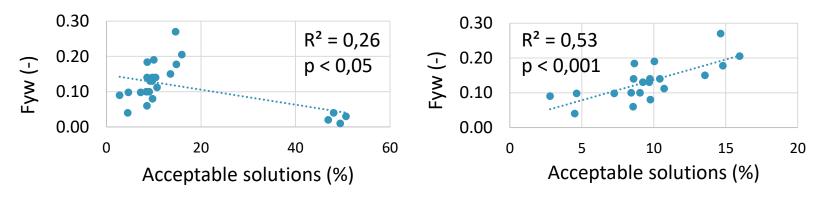
$$\rightarrow$$
 TTD of streamflow (d⁻¹): $p_Q(T, t) = \frac{\delta\Omega_Q(S_T, t)}{\delta S_T} \cdot \frac{\delta S_T}{\delta T}$ (Eq. 6)

• Output data:
$$F_{yw}$$
 (-): $P_{Q}(T,t) = \int_{0}^{T} p_{Q}(T) dT$ (Eq. 7)

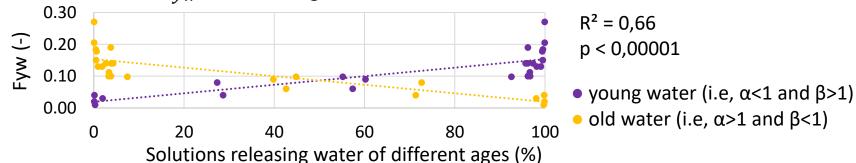
where *T* is set to roughly 2–3 months

EXPERIMENTAL DESIGN

METHODS


- Simulation of TTDs with 10,000 different SAS parameters set (i.e., α and β) generated by the Latin Hypercube Sampling approach
- The parameter sets producing a marginal TTDs, thus F_{yw} (Eq. 7), falling within $F_{yw} \pm SE$ (Eq. 3) were considered as acceptable
- From the cumulative daily TTD, we extrapolated the daily median transit time (i.e., TT_{50} ; time until 50 % of the infiltrated water ends up in the output flux)
- We constructed the 95 % prediction uncertainty (95PPU) to refine limits of TT_{50}

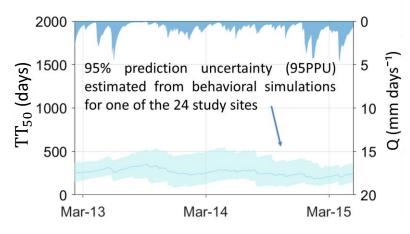
RESULTS



EFFECTIVNESS OF F_{vw} TO SIMULATE TTDs

- Accetpable solutions ranges from 49% to 3% (mean of 16%) of the initial 10,000 parameter sets
- The lower F_{yw} , the less the acceptable solutions; however, when $F_{yw} > 0.04$ the trend reverses

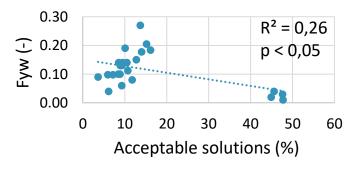
- The higher (lower) F_{yw} , the narrower (wider) the 95PPU and the shorter (longer) the simulated TT_{50}
- F_{yw} and solutions releasing water of different ages correlate well: this corroborates F_{vw} functioning



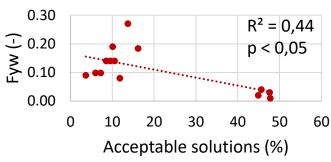
RESULTS

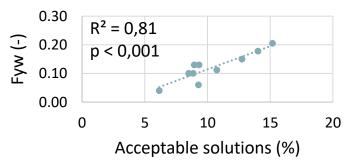
SIMULATED TT₅₀

• Relatively constant with little temporal fluctuations as TT_{50} tend towards the average catchment discharge behavior


- Mountain areas:
- \rightarrow Slight trend towards short F_{yw} and long TT_{50} which might be due to rapid vertical infiltration caused by drainign soil
- Lowland areas:
- \rightarrow Large F_{yw} and short TT_{50} which might be due to artificial drainage
- \rightarrow Small F_{yw} and long TT_{50} which might be due to deep groundwater flowpaths

RESULTS




CATCHMENTS ATTRBUTES

 F_{yw} exhibits correlation with P, Q, and mean altitude in mountain areas only

- all sub-catchments
- mountainous sub-catchments
- lowland sub-catchments

- Greater ability to infer SAS parameters and TTDs:
- \rightarrow Small F_{yw} (but $F_{yw} > 0.04$) in low-elevated mountain sites with modest P and Q
- \rightarrow Small F_{yw} in lowland sites

CONCLUSIONS

- Information on F_{yw} largely reduces uncertainty in TTDs and equifinality in model parameters
- The value of F_{yw} really matters as the number of solutions and the values of TTDs change accordingly
- Information on F_{yw} helps interpret transport processes in catchments
- Effectiveness of F_{yw} in inferring TTDs is a function of the catchments attributes

Thank you for your attention

Any questions?

Display Material

https://meetingorganizer.copernicus.org/EGU22/EGU22-4898.html

arianna.borriero@ufz.de

