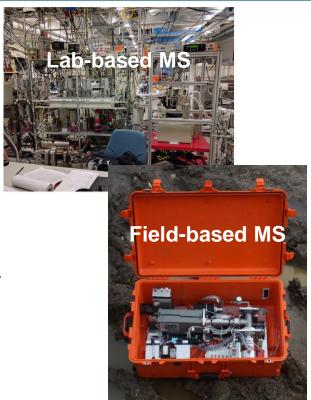


Combined Use of ³H/³He Apparent Age and On-Site Helium Analysis to Identify Groundwater Flow Dynamics and Transport Of PCE

C. Moecka, A. Poppa,b, M. Brennwalda, R. Kipfera,b,c M. Schirmera,d

Christian.moeck@eawag.ch

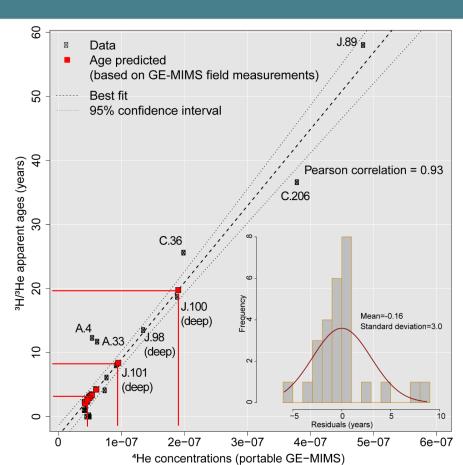
- ^a Department of Water Resources and Drinking Water, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- ^b Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
- ^c Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
- d Centre of Hydrogeology and Geothermics (CHYN), University of Neuchâtel, Neuchâtel, Switzerland



Introduction

- Tritium (³H) is a suitable tracer for younger groundwater.
- Radiogenic ⁴He is a by-product of the ³H/³He method and used as an additional indicator for groundwater age.
- New developments in portable field-operated GE-MIMS system provides a unique opportunity to measure dissolved gas concentrations, such as ⁴He, in groundwater systems
- 4He accumulation rates are often obtained from 3H/3He ages.
- → We aimed to **determine the relationship** between field-measured ⁴He concentrations analyzed with a GE-MIMS system and lab-based apparent ³H/³He ages.

Relationship between ³H/³He apparent ages and GE-MIMS measurements



Study Area:

Drinking water supply site combined with artificial infiltration (~95.000 m³/d)

Relationship:

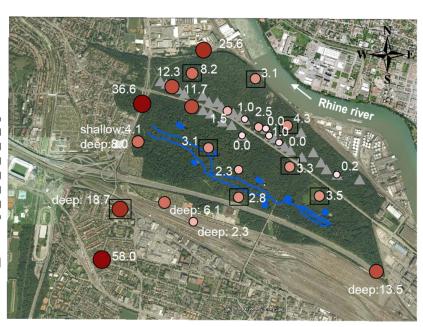
- Linear relationship between field-measured ⁴He concentrations collected with the GE-MIMS system and the estimated laboratory ³H/³He apparent ages.
- Apparent ages can be predicted for sampling locations where only ⁴He concentration from the GE-MIMS measurements are available.

Spatial Distribution Apparent Ages

Relatively young water \rightarrow close to the artificial infiltration system.

Oldest water → in the south and at western edge.

Multilevel wells → increasing trend with increasing depth.

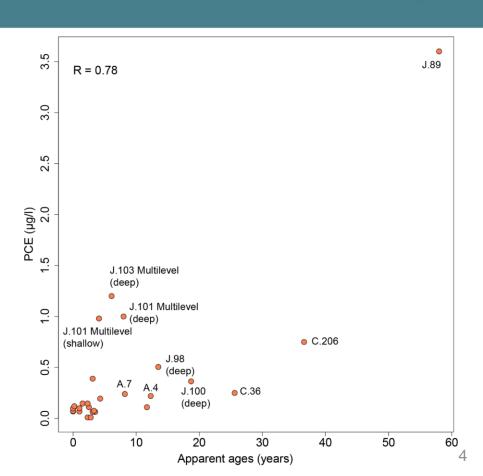

Pumping wells → older ages at wells located at the western edge.

Legend

Apparent ages (years)

- 0.0 1.0
- 0 1.01 2.5
- O 2.51 5.0 | Measured | (Lab-³H/³He)
- 5.01 10.0 -
- 10.01 15.0 Predicted (based on
- 15.01 30.0 GE-MIMS)
- 30.01 58.01
- ▲ Groundwater abstraction well
- Infiltration system

Apparent Ages and PCE



Highest concentration PCE → oldest groundwater.

PCE concentration decreases with decreasing age.

Most multilevel wells with deeper sampling depths indicate higher concentrations of PCE.

Pumping wells in the western part of the pumping well gallery (e.g. A.4 and A.7) show higher concentrations of PCE.

Contact: Christian.moeck@eawag.ch

Thank you for your attention

Journal of Contaminant Hydrology 238 (2021) 103773

Contents lists available at ScienceDirect

Journal of Contaminant Hydrology

journal homepage: www.elsevier.com/locate/jconhyd

Combined method of ${}^3H/{}^3He$ apparent age and on-site helium analysis to identify groundwater flow processes and transport of perchloroethylene (PCE) in an urban area

Christian Moeck a,* , Andrea L. Popp a,b,1 , Matthias S. Brennwald a , Rolf Kipfer a,b,c , Mario Schirmer a,d

- a Department of Water Resources and Drinking Water, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switserland
- b Department of Environmental Systems Science, ETH Zurich, Zurich, Switzerland
 c Department of Earth Sciences, ETH Zurich, Zurich, Switzerland

d Control Bulgary Law Control (CDVA) University of New hird New hird College

https://gasometrix.com/

Moeck et al. (2021). Combined method of 3H/3He apparent age and on-site helium analysis to identify groundwater flow processes and transport of perchloroethylene (PCE) in an urban area. Journal of contaminant hydrology.

The authors acknowledge the financial support of

- the Canton Basel-Landschaft, Switzerland, in the framework of the RWBL 21 project
- internal Eawag Discretionary Funding

