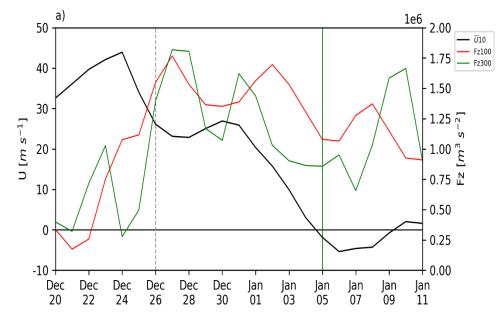


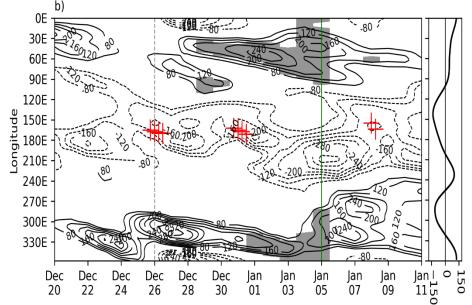




EGU22-493


# A critical role of the North Pacific bomb cyclones in the onset of the 2021 Sudden Stratospheric Warming

Hyeong-Oh Cho<sup>1</sup>, Min-Jee Kang<sup>1</sup>, Seok-Woo Son<sup>1</sup>, Dong-Chan Hong<sup>1</sup>, and Joonsuk M. Kang<sup>2</sup>


<sup>1</sup>School of Earth and Environmental Sciences, Seoul National University, Seoul, Republic of Korea.

<sup>2</sup>Department of the Geophysical Sciences, The University of Chicago, Chicago, United States of America.

### The 2021 SSW & tropospheric precursors



- 2021 SSW onset: **January 5, 2021**.
- There are two peaks of upward wave propagation from the upper troposphere to the lower stratosphere.
- Before the SSW onset, successive bomb cyclones are developed over the North Pacific where the climatological Aleutian low exists.

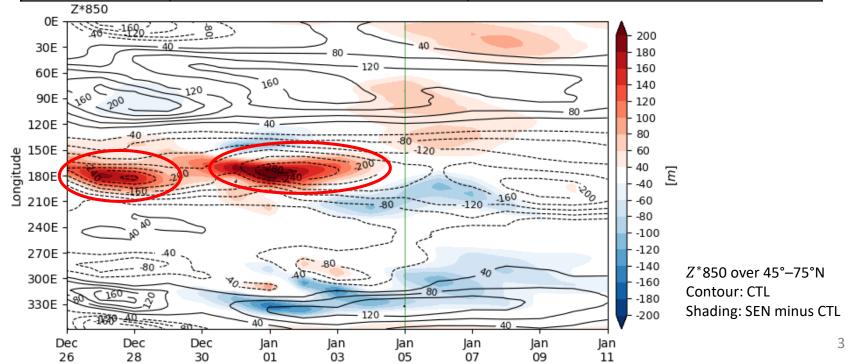


a) Black solid:  $\overline{U}10$  at 60°N

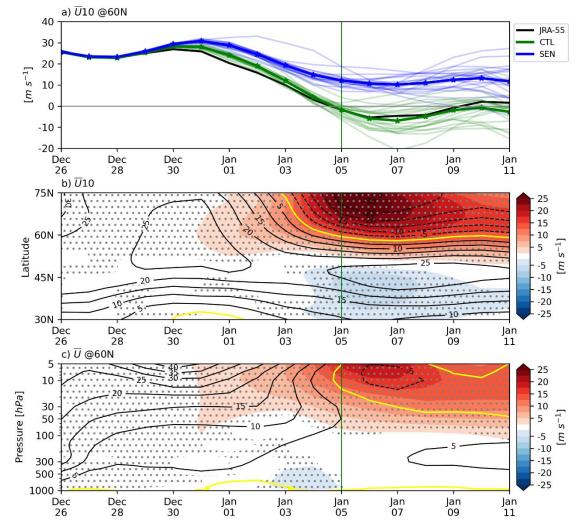
Red/Green solid: planetary-scale Fz (normalized) at 100/300 hPa

b) Contour:  $Z^*850$  over  $45^{\circ}-75^{\circ}N$ , their climatology (right) Red cross: Rapidly deepening position of bomb cyclones Gray shading: blocking at 60°N.

## Experimental designs


Numerical Model: Global/Regional Integrated Model system (GRIMs)

Initialization: 00 UTC December 26, 2020


Ensemble: 20 perturbed ensemble

In SEN, the bomb cyclone is removed using Potential Vorticity (PV) inversion

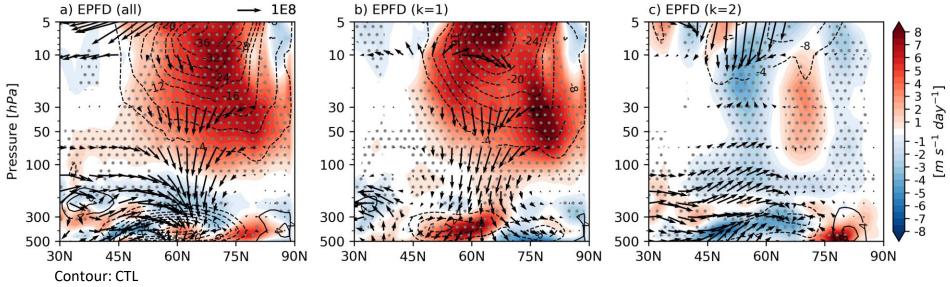
|                     | Control (CTL)             | Sensitivity (SEN)                                                            |
|---------------------|---------------------------|------------------------------------------------------------------------------|
| Initial condition   | U, V, T, Z, Q from JRA-55 | Same with CTL, but <b>anomalous cyclonic fields</b> (U, V, T, Z) are removed |
| PV inversion domain | Not used                  | Pacific: 20°–80°N, 110°E–160°W<br>Levels: 1000–150 hPa                       |



## Impact of bomb cyclones on 2021 SSW



- CTL: reproduces the 2021 SSW (T+10 day lead)
- SEN: much weaker wind deceleration, not recorded SSW onset.
- The weaker deceleration in SEN: evident in the polar stratosphere

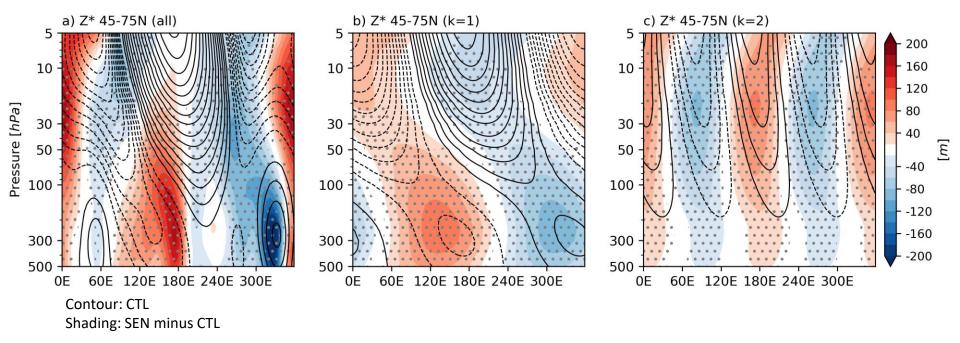

a)  $\overline{U}10$  at  $60^{\circ}N$ 

Green: CTL, Blue: SEN b)  $\overline{U}10$ , and c)  $\overline{U}$  at  $60^{\circ}N$ 

Contour: CTL

Shading: and SEN minus CTL

## Dynamical explanation: EP flux analysis




Shading: SEN minus CTL

Arrows: normalized EP flux vector difference (p<0.01)

- Before the 2021 SSW onset, strong negative EPFD is found in CTL, which explains polar vortex weakening.
- Compared to CTL, EPFD magnitude in SEN is significantly small due to reduced wave propagation in the vertical direction.
- The differences are mainly attributable to the difference in upward propagation of the k=1 wave.

#### Wave interference



- The k=1 components in SEN are **out of phase** with the k=1 pattern in CTL, which is a dominant pattern from the upper troposphere to the lower stratosphere.
- The k=2 component in SEN is in phase with the k=2 pattern in CTL, but recessive than the k=1 component.
- These results imply that k=1 wave interference by bomb cyclone plays an important role
  in the onset of the 2021 SSW.

#### Conclusions

- The 2021 SSW is successfully reproduced by a model initialized 10 days before the SSW.
- The model initialized without the North Pacific bomb cyclone does not simulate the 2021 SSW.
- Removing the North Pacific bomb cyclone reduces the k=1 wave propagation into the stratosphere, reducing wave breaking in the stratosphere.

Cho, H.-O., Kang, M.-J., Son, S.-W., Hong, D.-C., and Kang, J. M. (2022). A critical role of the North Pacific bomb cyclones in the onset of the 2021 sudden stratospheric warming. (in production, doi: 10.1029/2022GL099245)