WAVETRISK-OCEAN

an adaptive dynamical core for ocean modelling

Nicholas Kevlahan

Department of Mathematics and Statistics

EGU — 25 May 2022

Collaborators

- Florian Lemarié (co-author)
 Inria, Université Grenoble Alpes, France
- Thomas Dubos (WAVETRISK)

 LMD, École Polytechnique, France
- Matthias Aechtner (contributed to shallow water code)
 Former PhD student

(Credit: NASA Apollo 17 mission)

1 Shallow water equations on the plane using TRISK discretization.

(Credit: NASA Apollo 17 mission)

2 Shallow water equations on the sphere using TRISK discretization (*lcosahedral C-grid*).

(Credit: NASA Apollo 17 mission)

3D hydrostatic extension using DYNAMICO approach, horizontal adaptivity.

(Credit: NASA Apollo 17 mission)

4 Lagrangian vertical coordinates (PPR conservative remapping).

(Credit: NASA Apollo 17 mission)

Incompressible version of WAVETRISK for ocean modelling.

(Credit: NASA Apollo 17 mission)

2 Volume penalization for coastline boundary conditions (shallow water model).

(Credit: NASA Apollo 17 mission)

3 Volume penalization for bathymetry in CROCO (Debreu, Kevlahan, Marchesiello 2020, Ocean Modelling).

(Credit: NASA Apollo 17 mission)

4 Barotropic-baroclinic mode splitting (implicit free surface).

(Credit: NASA Apollo 17 mission)

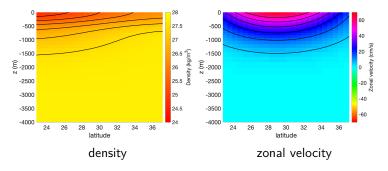
Vertical diffusion with TKE closure, surface forcing of velocity and buoyancy.

Approximations of WAVETRISK-OCEAN

- Hydrostatic
- Simple Boussinesq (exactly incompressible $\rho_{pot} = \rho \rho_0 gz/c_s^2 \approx \rho$).
- Hamiltonian-based inhomogeneous multilayer shallow water equations (*Ripa 1993*).
- Conservative remapping (Engwirda and Kelly 2016).
- Barotropic-baroclinic mode splitting (implicit free surface, adaptive multilevel method for elliptic problem).
- Linear equation of state.
- Vertical diffusion.

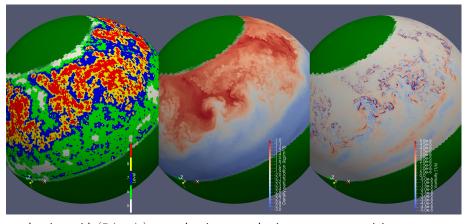
 (TKE closure as in NEMO/CROCO.)
- Volume penalization of coastlines. (no-slip boundary conditions.)

Dynamical equations


inertial mass (layer heights)
$$\partial_t \mu_{ik} + \delta_i U_{ek} = K_\mu D_\phi \mu_{ik}$$
 mass-weighted buoyancy
$$\partial_t \Theta_{ik} + \delta_i (\theta_{ek}^* U_{ek}) = K_\Theta D_\phi \Theta_{ik},$$
 velocity
$$\partial_t v_{ek} + \delta_e B_{ik} - \theta_{ek}^* \delta_e \overline{\Phi_{il}}^k + (q_{ek} U_{ek})_e^\perp = K_\delta D_\delta v_{ek} + K_\omega D_\omega v_{ek}$$

horizontal diffusion

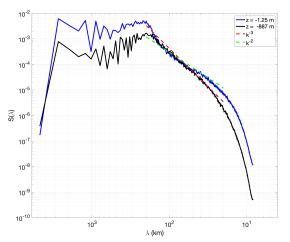
$$\begin{array}{ll} \mu_{ik} = \rho_0 \Delta z_{ik} & \text{inertial mass} \\ \theta_{ik} = 1 - \rho_{ik}/\rho_0 & \text{buoyancy} \\ U_{ek} = \overline{\mu_{ik}}^e v_{ek} & \text{horizontal mass flux} \end{array}$$


Unstable baroclinic jet (Soufflet et al 2016)

- Realistic test with TKE vertical diffusion model and 60 vertical layers.
- Localized turbulence is a good test of adaptivity.
- Spherical harmonic energy spectra computed using shtools.

Initial conditions (zonal averages).

Unstable baroclinic jet (Soufflet et al 2016)


adaptive grid (5 levels)

density perturbation

vorticity

Baroclinic turbulence in top layer.

Unstable baroclinic jet (Soufflet et al 2016)

Energy spectrum at surface and at -897 m.

■ DYNAMICO-based 3D hydrostatic incompressible Boussinesq model.

- DYNAMICO-based 3D hydrostatic incompressible Boussinesq model.
- Barotropic-baroclinic mode splitting using implicit free surface.

- DYNAMICO-based 3D hydrostatic incompressible Boussinesq model.
- Barotropic-baroclinic mode splitting using implicit free surface.
- Lagrangian vertical coordinate (ALE) with conservative remapping.

- DYNAMICO-based 3D hydrostatic incompressible Boussinesq model.
- Barotropic-baroclinic mode splitting using implicit free surface.
- Lagrangian vertical coordinate (ALE) with conservative remapping.
- Dynamic adaptivity controls interpolation error.

- DYNAMICO-based 3D hydrostatic incompressible Boussinesq model.
- Barotropic-baroclinic mode splitting using implicit free surface.
- Lagrangian vertical coordinate (ALE) with conservative remapping.
- Dynamic adaptivity controls interpolation error.
- Vertically uniform, horizontally adapted grid.

- DYNAMICO-based 3D hydrostatic incompressible Boussinesq model.
- Barotropic-baroclinic mode splitting using implicit free surface.
- Lagrangian vertical coordinate (ALE) with conservative remapping.
- Dynamic adaptivity controls interpolation error.
- Vertically uniform, horizontally adapted grid.
- Volume penalization for coastlines.

- DYNAMICO-based 3D hydrostatic incompressible Boussinesq model.
- Barotropic-baroclinic mode splitting using implicit free surface.
- Lagrangian vertical coordinate (ALE) with conservative remapping.
- Dynamic adaptivity controls interpolation error.
- Vertically uniform, horizontally adapted grid.
- Volume penalization for coastlines.
- Vertical diffusion with TKE closure scheme.

- DYNAMICO-based 3D hydrostatic incompressible Boussinesq model.
- Barotropic-baroclinic mode splitting using implicit free surface.
- Lagrangian vertical coordinate (ALE) with conservative remapping.
- Dynamic adaptivity controls interpolation error.
- Vertically uniform, horizontally adapted grid.
- Volume penalization for coastlines.
- Vertical diffusion with TKE closure scheme.

- DYNAMICO-based 3D hydrostatic incompressible Boussinesq model.
- Barotropic-baroclinic mode splitting using implicit free surface.
- Lagrangian vertical coordinate (ALE) with conservative remapping.
- Dynamic adaptivity controls interpolation error.
- Vertically uniform, horizontally adapted grid.
- Volume penalization for coastlines.
- Vertical diffusion with TKE closure scheme.

Ongoing work

- Adapt vertical grid by optimizing target grid (r-adaptivity) or de-activating some vertical layers (dormant layers).
- Implement penalization of bathymetry.
- Realistic global ocean simulations where turbulence dynamics are important.