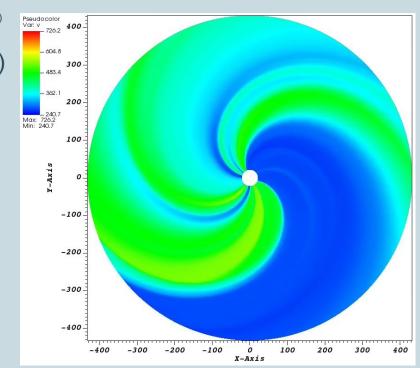


The effect of AMR on the advanced magnetized CME model

Tinatin Baratashvili¹, S. Poedts^{1,3}, C. Verbeke^{1,2}

¹KU Leuven, Mathematics, Centre for mathematical Plasma Astrophysics, Leuven,

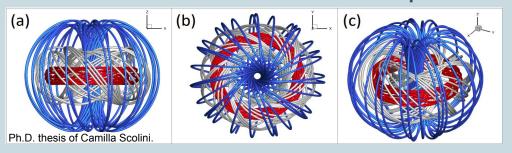

² Royal Observatory of Belgium, Brussels, Belgium,

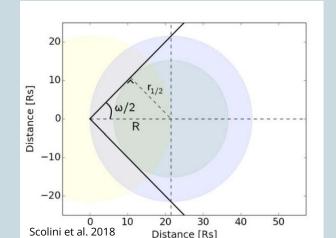
³ Institute of Physics, University of Maria Curie-Skłodowska, Lublin, Poland

Carus (Verbeke et al., 2022)

New heliospheric model in *MPI-AMRVAC* (Xia et al., 2018)

- Ideal MHD equations (polytropic index γ =1.5)
- Model of the Solar wind from 0.1AU to 2AU
- Input: Solar wind data generated from a magnetogram
- Reference frame co-rotating with the Sun




Carus (Verbeke et al., 2022)

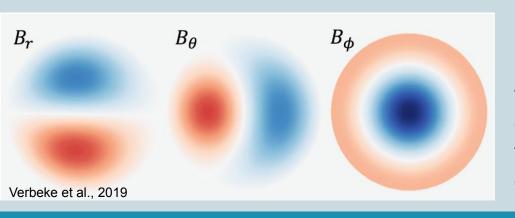
New heliospheric model in MPI-AMRVAC (Xia et al., 2018)

- Propagation of the Coronal Mass Ejections (CMEs) in the domain
 - Cone model
 - Magnetized CME model

Spheromak

Cone CME

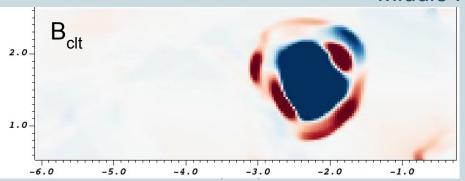
Carus (Verbeke et al., 2022)

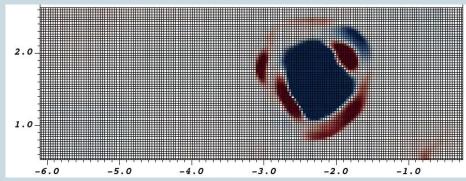

New heliospheric model in MPI-AMRVAC (Xia et al., 2018)

- Propagation of the Coronal Mass Ejections (CMEs) in the domain
 - Cone model
 - Magnetized CME model
- Advanced Techniques:
 - Radial grid Stretching
 - Adaptive Mesh Refinement (AMR)

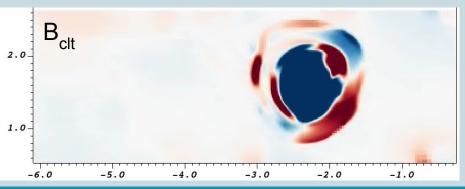
Linear Force-Free Spheromak (LFFSpheromak(Shiota&Kataoka, 2016))

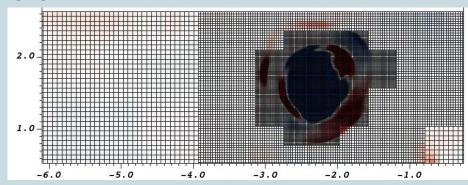
$$egin{align} B_r' &= 2B_0rac{j_1(lpha r')}{lpha r'}cos heta',\ B_ heta' &= -B_0\Big[rac{j_1(lpha r')}{lpha r'} + j_1'(lpha r')\Big]sin heta',\ B_\phi' &= H\cdot B_0j_1(lpha r')sin heta'. \end{gathered}$$


Magnetic field is divergence free and force-free

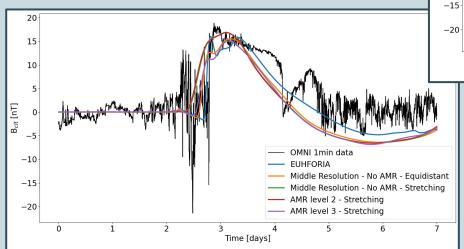


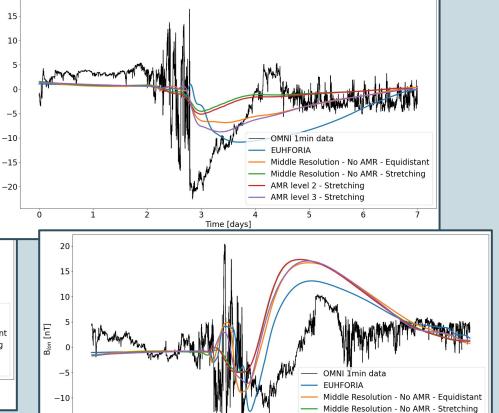
Magnetic field components of an LFFS model with tilt angle τ_{CMF} of 90.0 [deg] in the meridional plane in HEEQ coordinates. **Red** and **blue** correspond to **positive** and **negative** magnetic field components, respectively.


Adaptive Mesh Refinement (AMR) on spheromak


Middle Resolution

AMR level 3

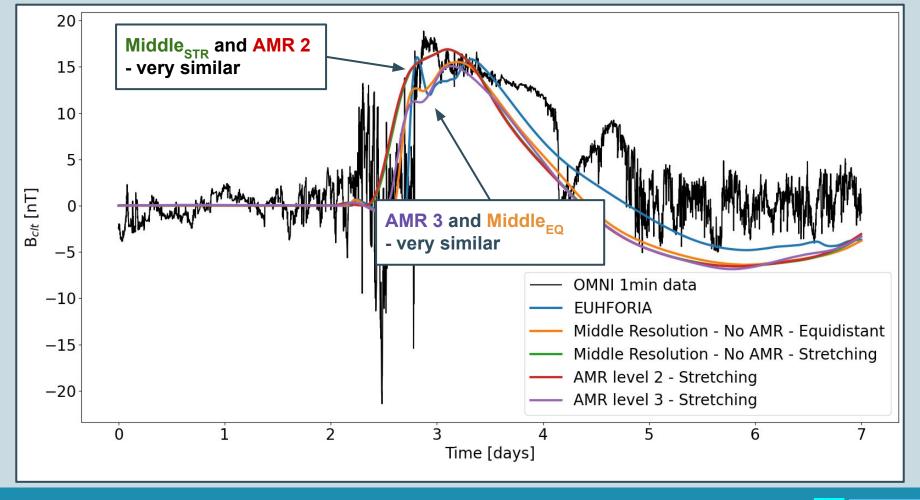



Time series at Earth

CME event: July 12th, 2012 from the NOAA AR 11520.

Br [nT]

-15



Time [days]

AMR level 2 - Stretching

AMR level 3 - Stretching

Speed up

	EUHFORIA (Middle resolution)	Icarus (Middle) Equidistant	Icarus (Middle) Stretched	AMR 2	AMR 3
Wall-clock times	18h 2m	6h 9m	1h 3m	0h 14m	0h 38m

Simulations are performed on 1 node only (with 36 CPUs) on the Genius cluster at the Vlaams Supercomputing Centre.

Speed up factors

	Icarus (Middle)	EUHFORIA
AMR 2	26	77.3
AMR 3	9.7	28.5

Linear Force-Free Spheromak (LFFSpheromak(Shiota&Kataoka, 2016))

$$B_r' = 2B_0 rac{j_1(lpha r')}{lpha r'} cos heta', \qquad \qquad iggrap B_r(r, heta,\phi) = \left(rac{\Delta}{r}
ight)^2 b_r(\Delta, heta,\phi), \ B_{ heta}' = -B_0 \left[rac{j_1(lpha r')}{lpha r'} + j_1'(lpha r')
ight] sin heta', \qquad B_{ heta}(r, heta,\phi) = rac{\Delta}{r} rac{d\Delta}{dr} b_{ heta}(\Delta, heta,\phi), \ B_{\phi}' = H \cdot B_0 j_1(lpha r') sin heta'. \qquad B_{\phi}(r, heta,\phi) = rac{\Delta}{r} rac{d\Delta}{dr} b_{\phi}(\Delta, heta,\phi).$$

Gibson&Low. 1998

 B_r B_{θ} B_{ϕ} Verbeke et al., 2019

Magnetic field components of an LFFS model with tilt angle τ_{CMF} of 90.0 [deg] in the meridional plane in HEEQ coordinates. **Red** and **blue** correspond to **positive** and **negative** magnetic field components, respectively.

Summary & Future work

- New heliospheric model Icarus (Verbeke et al., 2022)
- Advanced techniques
 - Grid Stretching
 - Adaptive Mesh Refinement
- CME models
 - Cone CME
 - Magnetized CME
- Advanced Gibson & Low model Ongoing

