Quantification of the cross helicity cascade in compressible MHD simulations

Victor Montagud-Camps¹, Petr Hellinger¹, Andrea Verdini^{2,3}, Emanuele Papini^{3,4}, Luca Franci⁵, Lorenzo Matteini⁶, Simone Landi^{2,3},

Astronomical Institute, CAS, Prague, Czech Republic
 Università di Firenze, Italy
 Osservatorio Astrofisico di Arcetri, Firenze, Italy
 Instituto di Astrofisica e Planetologia Spaziali, Roma, Italy
 Queen Mary University of London, UK
 Imperial College, London, UK

EGU 2022

Introduction

- Karman-Howarth-Monin (KHM) equations provide a way to estimate the energy cascade rate (and the dissipation rate) of turbulent flows without resorting to phenomenological models.
- Fluctuations in the interplanetary medium are generally subsonic, but can still
 reach non-negligible levels of compressibility, specially in the slow winds, the
 magnetosheaths or close to the Sun. This motivates the development of KHM
 equations that account for compressible effects.
- High cross helicity (correlation of magnetic and velocity fluctuations) inhibits non-linear energy transfer in plasma turbulence. Like energy, cross helicity is also transfered towards smaller scales by non-linear interactions.
- We derived the KHM equation of cross helicity for the compressible MHD equations. We analyzed 3D compressible MHD simulations and used the KHM equations to analyze the cross helicity cascade.

Karman-Howarth-Monin equations

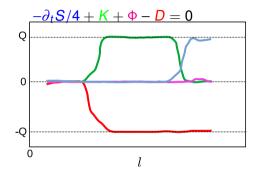
The KHM equations provide the evolution of second order structure functions $S(\ell) = \langle \delta \boldsymbol{a} \cdot \delta \boldsymbol{b} \rangle$, where ℓ is the separation scales, \boldsymbol{a} and \boldsymbol{b} are two generic fields, $\delta \boldsymbol{a} = \boldsymbol{a}(\boldsymbol{x} + \boldsymbol{\ell}) - \boldsymbol{a}(\boldsymbol{x})$, and $\langle \cdots \rangle$ is the volum average. From the compressible MHD equations, one can derive an equation valid in three-dimensional separation space

$$-\partial_t S/4 + K + \Phi - D = 0$$

where the first term in the left-hand side corresponds to the temporal decay, the second to non-linear transfer, the third to pressure-dilatation effects and the fourth to turbulence dissipation minus the turbulent heating rate *Q*.

The information is reduced to a 1D plot through isotropization of each term (see diagram).

Tipically, the term K is written as $K = \langle \nabla \cdot \mathbf{Y} \rangle$ with \mathbf{Y} being a third order structure function. In order to substantially reduce the computational cost of calculating the KHM terms, we have left them all in the form $\langle \delta \mathbf{a} \cdot \delta \mathbf{b} \rangle$.



KHM equations for cross-helicity and energy

KHM equations for cross helicity

Temporal decay term:

$$\partial_t S_H/4 = \partial_t \langle \delta \boldsymbol{u} \cdot \delta \boldsymbol{B} \rangle /4$$

Non-linear transfer terms:

$$K_{H} = <\delta \mathbf{B} \cdot \delta((\mathbf{u} \cdot \nabla)\mathbf{u}) - \delta \mathbf{B} \cdot \delta(\rho^{-1}(\nabla \times \mathbf{B}) \times \mathbf{B})$$
$$-\delta \mathbf{u} \cdot \delta(\nabla \times (\mathbf{u} \times \mathbf{B})) >$$

Terms associated to dissipation:

$$D_{H} = \left\langle -\delta \mathbf{B} \cdot \delta(\rho^{-1} \nabla \cdot \mathbf{\tau}) - \eta \delta \mathbf{u} \cdot \delta(\Delta \mathbf{B}) \right\rangle$$

Pressure-dilatation terms:

$$\Phi_{H} = -\left\langle \delta \mathbf{B} \cdot \delta(\rho^{-1} \nabla P) \right\rangle$$

KHM equations for energy

Temporal decay term:

$$\partial_t S_E/4 = \partial_t \left\langle \delta(\sqrt{\rho} \mathbf{u}) \cdot \delta \mathbf{B} \right\rangle /4$$

Non-linear transfer terms:

$$\begin{aligned} & \mathcal{K}_{E} = < \delta(\sqrt{\rho} \mathbf{u}) \cdot \delta((\mathbf{u} \cdot \nabla) \mathbf{u}) - \delta(\sqrt{\rho} \mathbf{u}) \cdot \delta(\sqrt{\rho} (\nabla \times \mathbf{B}) \times \mathbf{B}) \\ & - \delta \mathbf{B} \cdot \delta(\nabla \times (\mathbf{u} \times \mathbf{B})) > \end{aligned}$$

Terms associated to dissipation:

$$\mathbf{D_E} = \left\langle -\delta(\sqrt{\rho}\mathbf{u}) \cdot \delta(\rho^{-1/2}\nabla \cdot \boldsymbol{\tau}) - \eta \delta \mathbf{B} \cdot \delta(\Delta \mathbf{B}) \right\rangle$$

Pressure-dilatation terms:

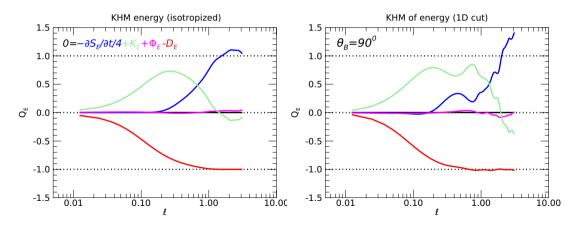
$$\Phi_{E} = -\left\langle \delta(\sqrt{\rho} \mathbf{u}) \cdot \delta(\rho^{-1/2} \nabla P) \right\rangle$$

Numerical set-up

- We present here the analisys of a 3D compressible MHD simulation with periodic boundary conditions, 512^3 grid-points resolution and a strong mean magnetic field $b/B_0 = 0.25$.
- Turbulence is free-decaying, shear velocity and magnetic fluctuations are initially injected within a sphere in Fourier space of radius $k_{cut-off} = 4$. Velocity and magnetic fluctuations are also at equipartition initially.
- The peak of turbulent activity is reached at $t = 6t_{NL}^0$, where $t_{NL}^0 = u_{rms}/L_0$ is the initial turn over time, L_0 the size of the numerical domain and u_{rms} the root mean square of the initial velocity fluctuations. The KHM terms have been computed at $t = 8t_{NL}^0$ for all cases presented here.
- Normalized cross helicity is initially set at $\sigma_c = 0.8$ and turbulent Mach number at M = 0.8, in order to enhance the possible effects of cross helicity and plasma compressibility on the KHM terms.

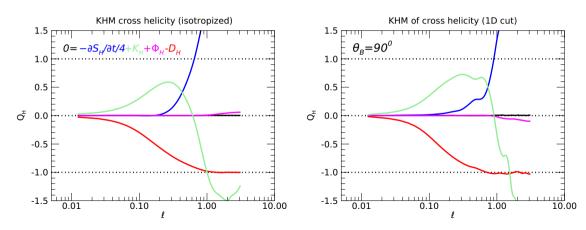
Energy cascade

Negligible pressure-dilatation effects. Direct cascade of energy at intermediate scales and small inverse cascade at large scales. Isotropization masks longer inertial range and larger values of the non-linear transfer term K_E .



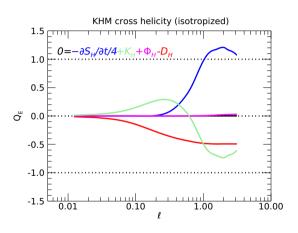
Cross helicity cascade

Similar to the energy cascade. Same anisotropy as the energy cascade. Larger negative non-linear transfer K_H . Shorter inertial range and shifted towards large separation scales.



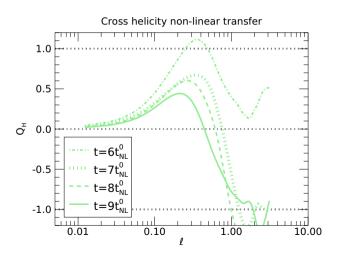
Back transfer of cross helicity cascade?

Cross helicity is not positively defined. Thus, negative K_H at large scales does not necessarely correspond to an inverse cascade. A direct cascade at all scales that changes the sign of cross helicity for a certain range of scales also has negative K_H . However, in such case, all KHM terms change the sign when normalized by Q_F . In this case, the the other KHM terms of cross helicity keep the same sign across all scales.



Temporal evolution of cross helicity cascade

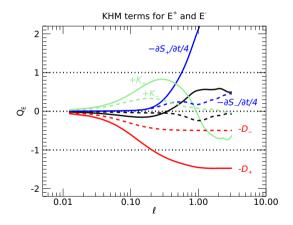
The inverse non-linear transfer at large scales of the cross helicity cascade remains for several turnover times.



Cascade of pseudo-energies

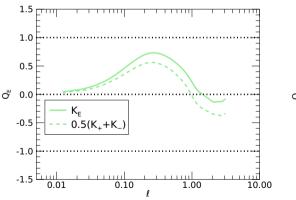
Assuming incompressibility, it is possible to compute the KHM equations for the pseudo-energies $E^{\pm}=|z^{\pm}|^2$ where $\mathbf{z}^{\pm}=\mathbf{u}\pm\mathbf{B}/\sqrt{4\pi<\rho}>$ are the Elsässer fields.

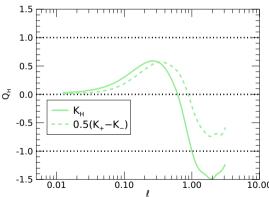
Due to non-negligible compressibility in the simulation, the KHM equations for E^{\pm} are not satisfied (errors are represented as black lines). Even if the errors are taken into account, one can state that there is a direct non-linear transfer of E^- at all scales. Conversely, there is an inverse cascade of E^+ at large scales and a direct at intermediate scales.



Incompressible and compressible non-linear transfers

Incompressible non-linear transfers for energy ($(K_+ + K_-)/2$) and cross helicity ($(K_+ - K_-)/2$) underestimate the real K_E and K_H about 10% of their repective heating rates. Conversely, the back transfer for cross helicity is largely underestimated and the energy one is overestimated.





Summary

 The KHM equations for cross helicity have allowed to show the presence of an inverse cascade of this quantity at large scales and a direct cascade at intermediate scales. Such configuration remains for several turnover times.

- The incompressible formulation of the KHM equation for cross helicity largely underestimates the back transfer at large scales.
- Energy and cross helicity cascades (direct and inverse) develop preferentially in the directions transverse to \mathbf{B}_0 .