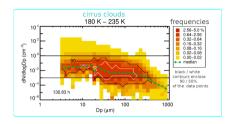
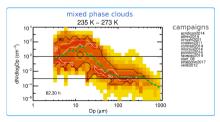

Occurrence patterns of cloud particles sizes in cirrus and mixed-phase clouds

Martina Krämer^{1,2} Nicole Spelten¹, Armin Afchine¹, and Reinhold Spang¹

(m.kraemer@fz-juelich.de)

2: IGU Mainz Germany




1: FZ Jülich

Germany

11 campaigns (2008-2021), 163 flights (≈ 238 h in cirrus, mixed phase and liquid clouds) data from Krämer et al. (2020), Costa et al. (2017), new campaign: Cirrus-HL

CLOUD PARTICLE SIZE DISTRIBUTIONS (PSDs)

> JULIA PSD-data base: see also subsequent presentations of

Spang et al. and Bartolomé-Garcia et al.

Motivation:

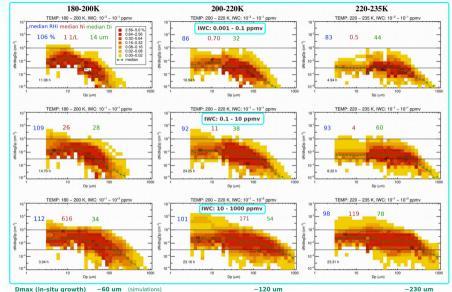
- PSDs determine → microphysical and thus → radiative properties of clouds
- functional forms of PSDs are used for
 - → retrievals of satellite cloud observations
 - → input for global climate models

improvement needed to reduce uncertainties in climate forecasts

Task:

Investigate PSDs from the large in-situ data set → emphasis on cirrus and mixed phase clouds

- variability of PSDs (temp., water content, etc.)
- occurrence frequencies of cloud particle sizes

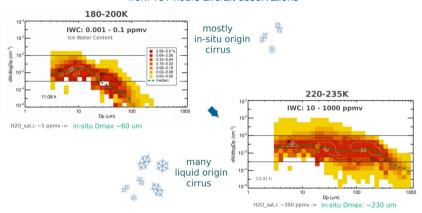


Cirrus clouds

mostly in-situ origin

 \downarrow

mostly liquid origin



SUMMARY CIRRUS CLOUDS

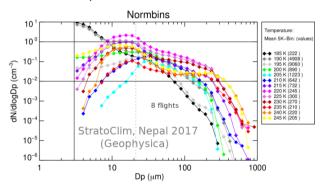
Occurence patterns of ice particle sizes & concentrations

from 131 hours aircraft observations

increasing T and IWC > larger ice particles

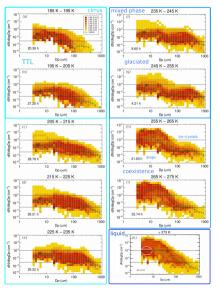
> core size range ~ 20 - 100 μm

Cloud particle size distributions



instrument original size bins with unequal width

Cloud particle size distributions



synchronized size bins with equal width

CLOUD PARTICLE SIZE DISTRIBUTIONS (PSDs)

