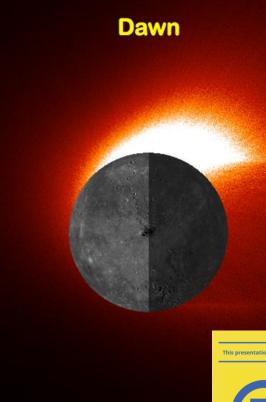
An Update on: Sputter yields in agreement with recent experimental data

Noah Jäggi¹, Herbert Biber², Paul S. Szabo^{2,3}, Andreas Mutzke⁴, Johannes Brötzner², Audrey Vorburger¹, Friedrich Aumayr², Peter Wurz¹, André Galli¹

Contact:

noah.jaeggi@unibe.ch

¹Physics Institute, University of Bern, Bern, Switzerland ²Institute of Applied Physics, TU Wien, Vienna, Austria ³Space Sciences Laboratory, University of California, Berkeley, USA ⁴Max Planck Institute for Plasma Physics (IPP), Greifswald, Germany


Solar wind (H⁺, He²⁺, ... O⁶⁺⁻⁸⁺, ...) supplies exosphere

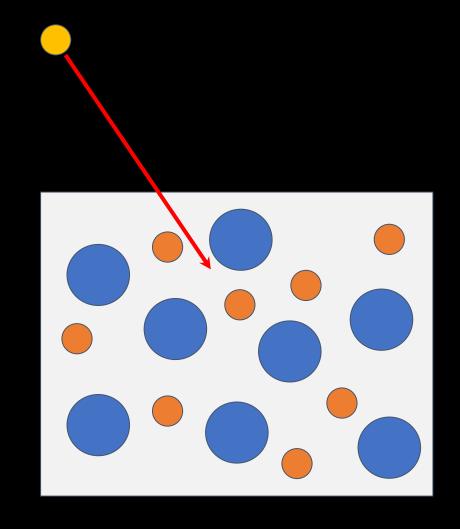
Mass ejection rate

- is fluence dependent
- reaches equilibrium in ~60/600 years (Merc/Moon)

SDTrimSP

- mineral interaction with SW ions
- allows for changing surface composition
- reproduces experimental data well

Dusk

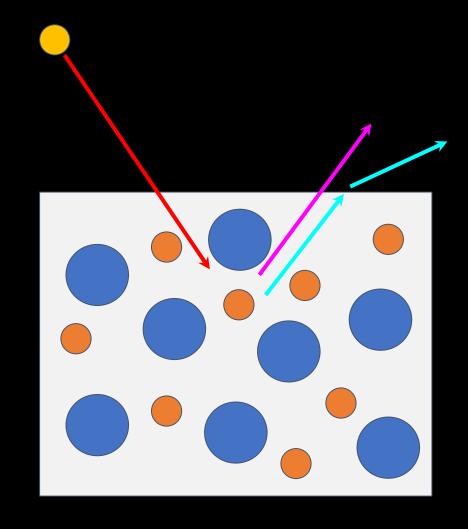


The SDTrimSP model

Monte Carlo model

- independent, binary collisions
- amorphous target with a given density
- collision occurs after a defined travelled distance
 - mean free path f(ρ)

$$\mu = \rho^{-1/3}$$



The SDTrimSP model

Two end-member assumptions

 collisions are elastic, particle only has to overcome a set surface binding energy (SBE)

 collisions experience no SBE, but a loss of energy as they have to overcome a bulk binding energy (BBE)

What about density?

 Severely underestimated based on atomic components

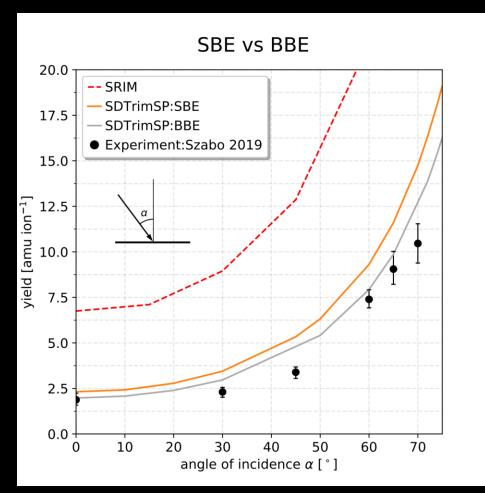
- Affects mean free path of recoils

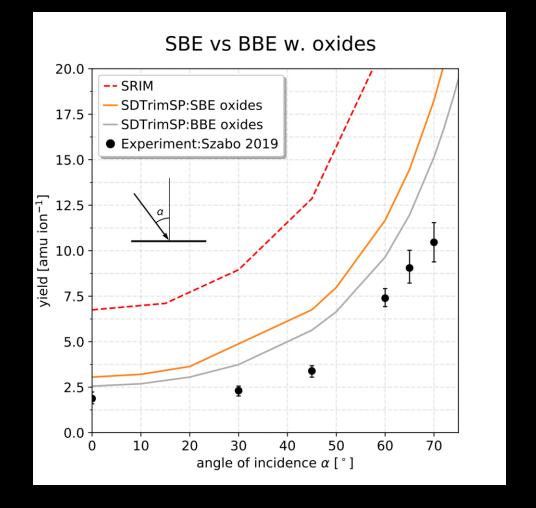
$$\mu = \rho^{-1/3}$$

	Components		$ ho_{ m calc}$	μ	ϵ^a_μ	
	[at/A ³]		[at/A ³]	[A]	[1]	
\mathbf{Ca}	Si	O				
0.0231	0.0499	0.0429	0.0376	2.985	+25%	
CaO	SiO_2					
0.0724	0.0797		0.0759	2.362	-1%	_
Mg	Si	O				
0.0431	0.0499	0.0429	0.0442	2.828	+30%	
MgO	SiO_2					
0.1070	0.0797		0.0913	2.221	+2%	
	0.0231 CaO 0.0724 Mg 0.0431 MgO	$\begin{array}{c cc} & & & & & \\ & & & & & \\ \text{Ca} & & & & \\ \text{Si} \\ \text{0.0231} & & & & \\ \text{CaO} & & & \\ \text{SiO}_2 \\ \\ \text{0.0724} & & & \\ \text{0.0797} \\ \text{Mg} & & \\ \text{Si} \\ \text{0.0431} & & & \\ \text{0.0499} \\ \text{MgO} & & \\ \text{SiO}_2 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

- OUT NOW:

New oxide model in SDTrimSP


Jäggi (in prep.)



Surface vs. Bulk effect (4 keV He+ on wollastonite)

The oxide model

Benefits:

- More realistic density

User friendly bulk binding model implementation

 Most relevant for modelers: bulk binding model generally better recreates experimental data of minerals!

Questions & Comments → Coffee Break

... or write me: noah.jaeggi@unibe.ch

