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Motivation
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Data Driven Methods for Mass Balance Estimation: Problem Formulation
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e Inputs used: Monthly mean of 14 meteorological variables

e Labels: Fluctuation of Glaciers database of point mass balance estimates

e Algorithms considered: Support Vector Machine, Random Forest and Deep Neural
Network

e Handling limited data: Transfer learning and dimensionality reduction
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Data and MEthOdS Input features (ERA5 Land M.Avg)
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Training and validation loss characteristics (a) CE dataset and (b) SA without transfer learning
and (c) SA with transfer learning
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Resu ItS Regressor Choice of Hyperparameters L1 Loss
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Conclusion

e For large training datasets, machine learning algorithms may effectively be used for
estimation of point mass balance

e For fewer training datasets, machine learning regressors such as SVM and Random
Forest continue to perform well as compared to complex neural network architectures

e An improvement in performance of complex architectures on limited datasets is
observed when using transfer learning

e Useful technique particularly for filling spatial and temporal gaps in field data

e Downscaling of meteorological data can be attempted for fine tuning results

e Recurrent structures in the network architecture to incorporate long term temporal
effects
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