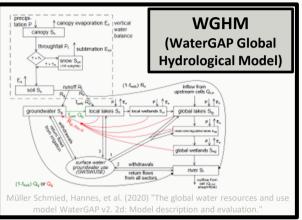


Joint Assimilation of GRACE Total Water Storage Anomalies and In-Situ Streamflow Data into a Global Hydrological Model

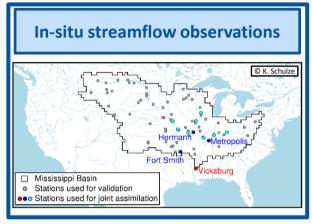
Kerstin Schulze¹, Jürgen Kusche¹, Helena Gerdener¹, Olga Engels¹, Petra Döll^{2,3}, Hannes Müller Schmied^{2,3}, Sebastian Ackermann², Somayeh Shadkam²

¹ Institute of Geodesy and Geoinformation, University of Bonn, Bonn, Germany (schulze@geod.uni-bonn.de)


² Institute of Physical Geography, Goethe University Frankfurt, Frankfurt am Main, Germany


³ Senckenberg Leibniz Biodiversity and Climate Resarch Centre (SBiK-f), Frankfurt am Main, Germany

BACKGROUND



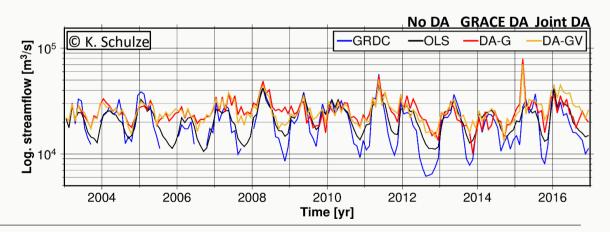
- Global
- Spatial resolution of ca. 50km
- 10 compartments
- Model uncertainties
- → Requires calibration or data assimilation

- Global
- Spatial resolution of ca. 300km
- Vertical integration of water column

- In-situ stations
- Irregular spatial distribution

→ Data assimilation can combine all information

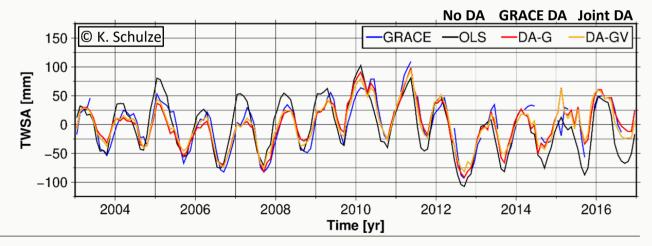
→ Assimilation improves storage but not streamflow simulations → Commonly used for calibration of hydrological models


RESULTS: STREAMFLOW

Validation at 65 gauge stations

- **GRACE** assimilation deteriorates streamflow simulations
- Joint assimilation shows improvements of the simulated streamflow (RMSE, correlations) but cannot completely counteract the GRACE influence
- → Impact on TWSA simulations?
- Consider more stations in the assimilation?

Improvements Deteriorations [% of the val. stat]	GRACE DA vs. no DA	Joint DA vs. GRACE DA
RMSE	8 <mark>92</mark>	<mark>52</mark> 46
Correlations	0 100	<mark>51</mark> 49
Linear Trend	17 <mark>83</mark>	32 <mark>83</mark>



RESULTS: TOTAL WATER STORAGE ANOMALIES

- **GRACE** assimilation pulls the TWSA simulations towards the observations
- Joint assimilation further improves the realism of the model simulations

TWSA	Obs	No DA	GRACE DA	Joint DA
RMSE [mm]		28	17	15
Correlations [%]		80	91	93
Linear Trend [mm/year]	1.3	-1.7	2.0	1.4

 Joint assimilation of GRACE-derived TWSA and observed in-situ streamflow data into the WaterGAP Global Hydrology Model (WGHM) via the Ensemble Kalman Filter

GlobalCDA project

www.globalcda.de **GlobalCDA**

- Results:

- Assimilating GRACE into the WGHM leads to more realistic total water storage simulations BUT decreases the fit of streamflow simulations at 83-100% of the validation stations
- Assimilating streamflow in addition to GRACE data improves the TWSA simulations and also the streamflow simulations regarding RMSE and correlation
- → Paper submitted to WRR also including the influence of
 - considering several streamflow stations in the assimilation
 - joint assimilation on individual WGHM storages
 - joint assimilation on other metrics, e.g. the NSC, RMS, ...

M.Sc. Kerstin Schulze schulze@geod.uni-bonn.de **KExploringEarth**