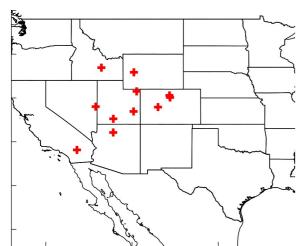
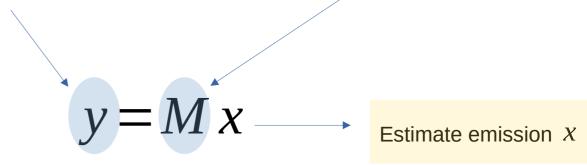
Two stage inversion method for microplastics emission estimation

Ondřej Tichý¹, Nikolaos Evangeliou², and Václav Šmídl¹


¹The Czech Academy of Sciences, Institute of Information Theory and Automation, Czechia ²Norwegian Institute for Air Research (NILU), Norway


EGU, 25th May 2022

Microplastics (MPs) and microfibers (MFs) data and atmospheric transport modeling

- measurements were collected weekly (wet) and monthly (dry) at 11 US national parks between 2017 and 2019
 - size classes: 5–10 μm, 10–25 μm, 25–50 μm, 50–100 μm, 100–250 μm, 250–500 μm (for Mps)
 - 236 wet and 103 dry samples were collected
 - see [Brahney et al., 2020] for more details

- source-receptor sensitivity is calculated for each sample using FLEXPART 10.4 backwards in time
 - Source-receptor matrix (SRM) is calculated for each spatial element of our domain
 - see [Evangeliou et al., 2022] for more details

[Brahney, J., Hallerud, M., Heim, E., Hahnenberger, M., Sukumaran, S.: Plastic rain in protected areas of the United States, Science 368(6496), 2020]

[Evangeliou N., Tichý O., Eckhardt S., Groot Zwaaftink C., Brahney J., Sources and fate of atmospheric microplastics revealed from inverse and dispersion modelling; from global emissions to deposition, Journal of Hazardous Materials, vol.432, 2022.]

Linear inverse problem and its solution

inverse problem for one spatial domain element, size fraction, and dry/wet samples

$$y = M x$$

- to estimate emission vector x, we optimize the mismatch between measurements (vector y) and theoretical model output (SRM M)
- we follow variational Bayes methodology where all unknowns have assigned prior model
 - emission prior model:

$$p(x)=tN\left(x^{a},\left(LVL^{T}\right)^{-1},\left[0,+\infty\right]\right)$$

- tN: truncated Gaussian distribution -> non-negative emission
- xa: prior emission vector (if available)
- LVL^T: flexible covariance structure

Inversion algorithm for spatial-temporal emission

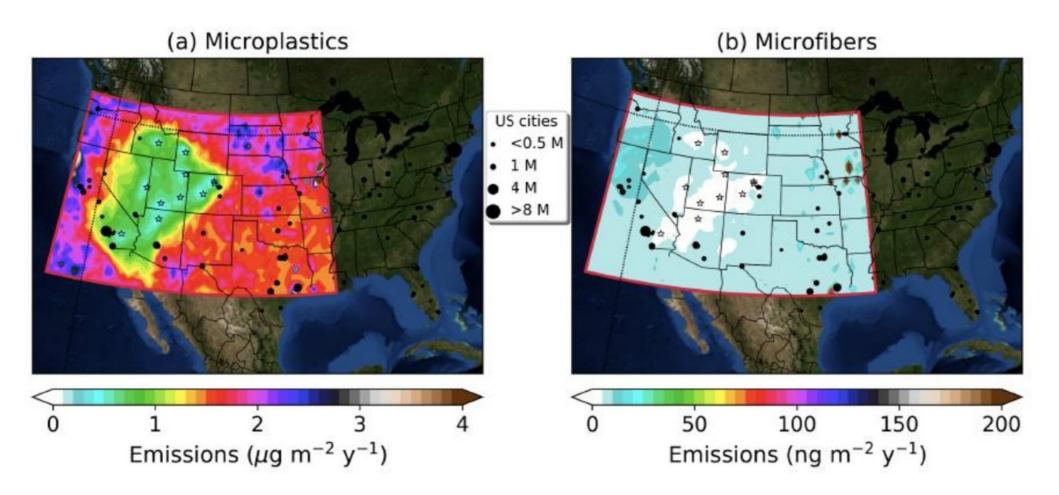
- very unstable for many domain places → need for regularization of the inverse problem
 - we found the prior emission as the most crucial regularization term

SRM M constructed for the whole domain as one source

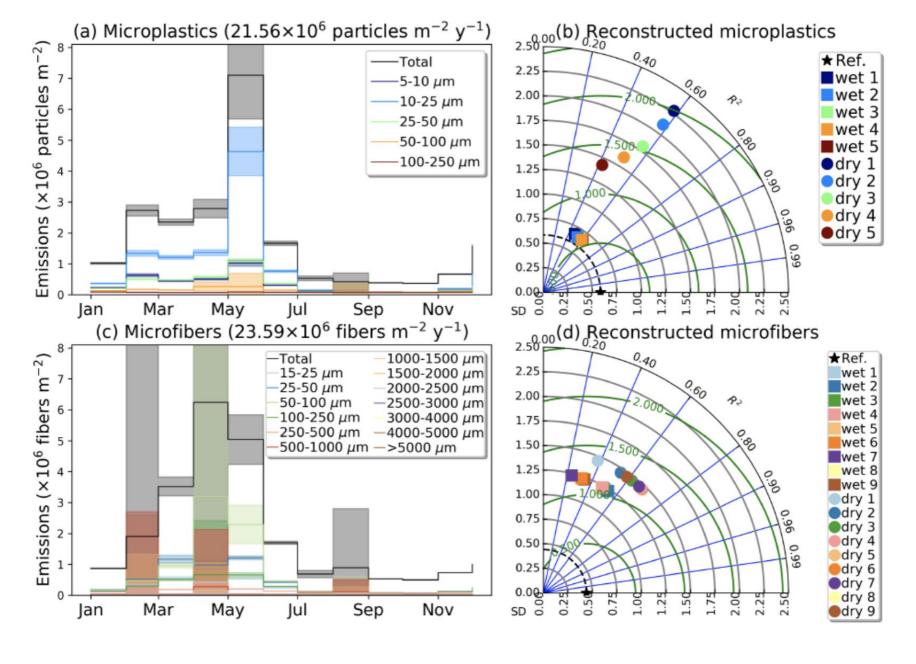
$$p(x)=tN\left(0,\left(LVL^{T}\right)^{-1},\left[0,+\infty\right]\right)$$

Averaged emission for one spatial element

$$p(x)=tN(x^a,(LVL^T)^{-1},[0,+\infty])$$


Variational Bayes iterative solution Posterior estimates:

$$\Sigma_{x} = \left(\omega M^{T} M + LVL^{T}\right)^{-1}$$


$$x = \Sigma_{x} \left(\omega M^{T} y + LVL^{T} x^{a}\right)$$

x^a used as a prior emission for each spatial element

Results: microplastics and microfibers

Results: microplastics and microfibers

Conclusion remarks

- annual emissions in western USA (124–91 W, 29–47 N) were estimated to
 - 22 ± 10 million MPs m-2 y-1
 - 24 ± 11 million MFs m⁻² y⁻¹
 - validated using extrapolation to global domain
- current research directions:
 - xa constructed based on known inventories (mineral dust, road dust, sea salt, and agriculture)
 - we can actually model correlations between particles size fractions
 - need for more measurements

Thank you for your attention!