

Dual-domain modeling of discharge dynamics in a laboratory-scale fractured porous matrix system

EGU General Assembly, 22-27 May 2022 (Vienna, Austria)

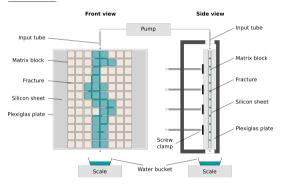
F. Rüdiger¹, M. Dentz², J.R. Nimmo³, and J. Kordilla¹

¹Geoscience Center, Applied Geology, Univ. of Göttingen, Göttingen 37077, Germany
²Spanish National Research Council (CSIC), Institute of Environmental Assessment and Water Research (IDAEA), Barcelona 08034, Spain
³Unsaturated Flow Research, Menlo Park, CA 94025, USA

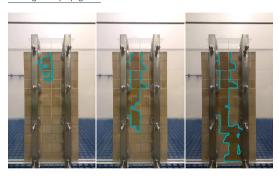
 \rightarrow Fractured porous media contribute to \sim 75% of global aquifers (Dietrich et al., 2005)

- Vadose zone, above groundwater table (variably saturated)
 - · Fractures and fracture networks
 - Matrix
 - → High contrasts in hydraulic conductivities
- → Water migrates on a wide range of time and spatial scales due to their homogeneous natures (Pruess, 1998)
- This study
 - Simplified analog infiltration experiments at lab-scale
 - · Modeling recharge dynamics with a dual-domain approach
 - Rüdiger et al. (2022)
- Our aims
 - Process understanding (Appendix A)
 - Fracture flow- and intersection dynamics
 - Fracture-matrix interactions
 - Model validation

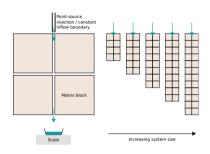
General setup



Wetting front propagation

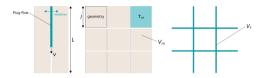


Approach: Simplified laboratory setup and dual-domain modeling



- $m \times 2$ porous blocks network systems
 - Varying total vertical length (m=2, 4, 6, 8, 10, 12)
 - Constant aperture of 1 mm
 - \bullet Constant inflow rate of 1.5 ml \cdot min $^{-1}$
 - Seeberger sandstone
 - Homogenous matrix (18.6 % effective porosity)
- \blacksquare Infiltration experiments \rightarrow measuring discharge
- $\blacksquare \ \ \mathsf{Qualitative} \ \mathsf{observations} \ \to \ \mathsf{Appendix} \ \mathsf{B}$

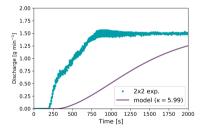
Dual-porosity model after Neuweiler et al. (2012)



- Memory function ϕ (Equation 3)
 - describes fracture-matrix mass exchange
- Parameters
 - Matrix-fracture volume ratio $\kappa = V_m/V_f$
 - ullet Characteristic imbibition time au_m
 - Fracture flow velocity $v = Q_0/aW$
- Model assumptions
 - Plug-flow in fractures
 - Perfectly coupled domains
- Appendix C and D

Original parameterization

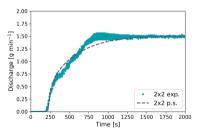
- $au_m = 600 \text{ s}$
- lacksquare v o experimentally determined L/t_1
- lacksquare κ derived from setup geometry (= 5.99)



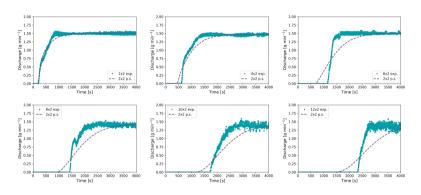
■ Strong deviations of first arrival and dispersion of outflow signal

Calibration

- $\tau_m = 600 \text{ s}$
- $\mathbf{v} \to \text{calibrated } (\mathbf{v}^*)$
- $\kappa \to \text{calibrated } (\kappa^*)$

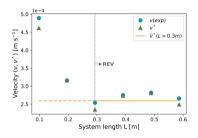


■ Calibrated model recovers discharge dynamics very well



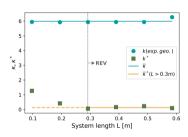
■ Deviations increase with increasing system length (L)

Velocity

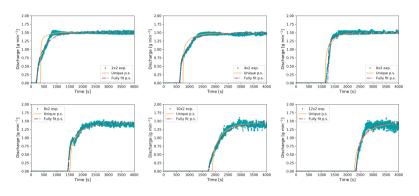


- Observed v and calibrated v^* almost the same
- lacksquare Both converge toward limit for $L \geq 0.3 \ \mathrm{m}$
- Averaged velocity $\overline{v^*} = 2.6e^{-4} \text{ m s}^{-1}$

Domain-coupling parameter

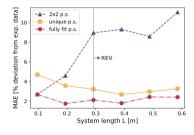


- \blacksquare Calibrated κ^* < geometrical determined κ
- Calibrated converges toward limit for $L \ge 0.3$ m
- Averaged transfer coefficient $\overline{\kappa^*} = 0.1356$
- \blacksquare Scaling factor $\alpha \ = \ \overline{\kappa^*}/\kappa = \text{0.0226}$



- Fully calibrated fits recover observed discharge dynamics
- Unique parameter set performs better for larger systems

Parameter sets



Unique

- Performs less well for very small systems below REV
- \blacksquare Describes discharge dynamics in sufficiently large systems with high accuracy (MAE <4%)
- \blacksquare Performs almost as good as the model fully calibrated for each L individually

2×2

- Deviation increases with increasing system length *L*
- Strong impact of partitioning dynamics at fracture intersection on discharge dynamics

Thank you for your attention!

If you have any questions feel free to contact me (fruediger@gwdg.de)

References

Dahan, O., Nativ, R., Adar, E. M., Berkowitz, B., & WeisbrodB, N. (2000). On fracture structure and preferential flow in unsaturated chalk. Groundwater, 38(3), 444–451.

Dietrich, P., Helmig, R., Hötzl, H., Sauter, M., Köngeter, J., & Teutsch, G. (2005). Flow and transport in fractured porous media. Springer Science & Business Media.

Neuweiler, I., Erdal, D., & Dentz, M. (2012). A non-local richards equation to model unsaturated flow in highly heterogeneous media under nonequilibrium pressure conditions. Vadose Zone Journal, 11(3), vzj2011–0132.

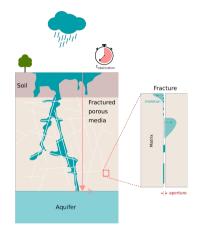
Nimmo, J. R. (2012). Preferential flow occurs in unsaturated conditions. Hydrological Processes, 26(5), 786-789.

Pruess, K. (1998). On water seepage and fast preferential flow in heterogeneous, unsaturated rock fractures. *Journal of contaminant hydrology*, 30(3-4), 333–362.

Rüdiger, F., Dentz, M., Nimmo, J., & Kordilla, J. (2022). Laboratory experiments and dual-domain modeling of infiltration dynamics in partially saturated fractured porous media. *Vadose Zone Journal*, 21(2), e20177.

Shigorina, E., Rüdiger, F., Tartakovsky, A. M., Sauter, M., & Kordilla, J. (2021). Multiscale smoothed particle hydrodynamics model development for simulating preferential flow dynamics in fractured porous media. Water Resources Research, 57(3), e2020WR027323.

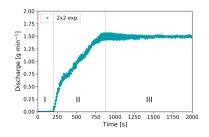
- Preferential flow and recharge dynamics as function of
 - Input conditions (infiltration)
 - Magnitude
 - Concentrated vs. diffuse
 - Temporal vs. steady
 - Fracture network properties
 - Density
 - Aperture
 - Topology (intersections, connectivity)
 - Fracture-matrix interactions
 - Imbibition
 - Fracture flow regimes
 - Discrete slugs
 - Films
- Flow path formation (volume or interface area)
- → Observed arrival times contradict common notion that flow in fractures only occur under equilibrium conditions (Dahan et al., 2000)
- → No ubiquitous classification for the onset of preferential flow exists (Nimmo, 2012)



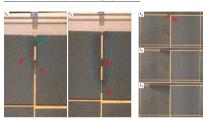
Appendix B: Qualitative observations

Example: 2 x 2 blocks network

- Three main phases (I, II, III)
 - I Redistribution water through fracture network and matrix imbibition
 - II Onset of discharge, ongoing matrix imbibition
 - III Quasi-steady state, matrix reached maximum saturation



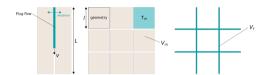
Flow modes and partitioning dynamics



- Two dominant flow modes
 - Slugs (S₁,S₂)
 - Films (F)
- Matrix imbibition (im) slows down fracture flow progression
- Slugs (S_2) and films (F) above the wetting front move extremely fast
- Intersections (partitioning dynamics)
 - Horizontal infiltration (hi)
 - By-passing

Appendix C: Dual-domain modeling

Dual-porosity model after Neuweiler et al. (2012)



- Equation 1 analytically solved
 - Initial boundary condition
 - Solution in Equation 5
- Memory function ϕ (Equation 3)
 - describes fracture-matrix mass exchange
- Parameters
 - ullet Matrix-fracture volume ratio $\kappa = V_m/V_f$
 - \bullet Characteristic imbibition time τ_m (Equation 4)
 - Fracture flow velocity $v = Q_0/aW$
- Model assumptions
 - Plug-flow in fractures
 - Perfectly coupled domains

Main equations

$$\frac{\delta S_f(z,t)}{\delta t} + \kappa \frac{\delta S_m(z,t)}{\delta t} - v \frac{\delta S_f(z,t)}{\delta z} = 0$$
 (1)

$$S_m = \int_0^t dt' \phi(t - t') S_f(t')$$
 (2)

$$\phi^*(\lambda) = \frac{1}{\sqrt{\lambda \tau_m}} \tanh\left(\sqrt{\lambda \tau_m}\right) \tag{3}$$

$$\tau_m = \frac{l^2}{D} \tag{4}$$

$$j^*(\lambda) = Q_0 \cdot \lambda^{-1} \cdot \exp[-La\lambda(1 + \kappa \phi^*)/v]$$
 (5)

 S_f, S_m Saturation fracture, -matrix

 V_f, V_m Volume fracture, -matrix

D Diffusion coefficient

/ Length scale characteristic geometry

a Fracture aperture

W Fracture width

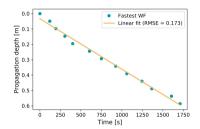
 $j^*(\lambda)$ Volumetric outflow rate (Laplace space)

Q0 Volumetric inflow rate

L Vertical system length

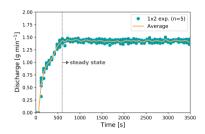
Appendix D: Preliminary investigations - Flow progression and time-scale of fracture-matrix interaction

12 x 6 blocks network



- Infiltration front into initially air-dry system progresses with constant velocity
- Supports plug-flow assumption
- $v \approx 3.28e^{-4} \text{ m s}^{-1}$

1 x 2 blocks network



- Characteristic imbibition time $\tau_m(exp.)$ ≈ 600 s
- $\tau_m(ana.) = l^2/D \approx 147 \text{ s}$
- / Block length = 0.04785 m
- D Diffusion coefficient = $1.56e^{-5}$ m s⁻¹
 - Based on parameter estimation (Shigorina et al., 2021)
 - Calculated with equation 20 (Neuweiler et al., 2012)
 - Taken for water content = 0.9

Outlook: Field work plans

- Difficult to set up experiments
 - Stability criteria
 - Study suitability of fracture network
- New potential sites: Ossenfeld and Vogelbeck
- Study analog to lab experiments

Ossenfeld

Vogelbeck

