

Quality Assessment of SARAH-3: The new regional satellite-based Surface Solar Radiation data set from the CM SAF

Jörg Trentmann, Uwe Pfeifroth,

Jaqueline Drücke, Roswitha Cremer

CM SAF Climate Data Records

CLARA-A2.1 / ICDR

HOAPS 4.0

- → CM SAF provides a variety of global and regional climate data records on clouds, radiation, surface parameters (e.g., LST), precipitation (ocean only)
- → Availability: 1982 to the day before yesterday
- → Resolution: Daily, monthly / 0.05°, 0.25°, 1°
- → All data are freely available at www.cmsaf.eu

SARAH-2.1

/ICDR

CM SAF SARAH Solar Surface Irradiance

Global radiation [W/m^2]

150 180 210 240 270

CLAAS-2.1 / ICDR

SUMET 1.0 CM SAF SUMET Land Surface Temperature Monthly Mean June 1991 00:00

COMET 1.0

History of METEOSAT-based surface solar radiation climate data records at CM SAF

MVIRI surface radiation data record 2005 2011 SIS, SID, CAL SARAH – 1st MVIRI+SEVIRI data record 2013 2015 SIS, DNI, CAL SARAH-2 – improved stability and accuracy 2015 2017 SIS, SID, DNI, SDU, SRI, CAL SARAH-2.1 – extention of SARAH-2 + ICDR introduction 2017 2019 SIS, SID, DNI, SDU, SRI, CAL SARAH-3 – upcoming, extended climate data record 2022 SIS, SID, DNI, SDU, PAR, DAL, CAL 1983 2020 Time period

CM SAF SARAH-3

Surface Solar Radiation Dataset – Heliosat

Variables

- → Surface Solar Irradiance (SIS)
- → Surface Direct Irradiance (SID, DNI)
- → Sunshine Duration (SDU)
- → Photosynthetic Active Radiation (PAR)
- → Daylight (DAL)
- → Effective Cloud Albedo (CAL)

Resolution

→ Spatial: 0.05° × 0.05°

→ Temporal: 30-min, daily-, monthly mean

→ Spatial: regional (±65°)

→ Temporal: 1983 to 2020

→ Available in late 2022 at <u>www.cmsaf.eu</u> currently available via: <u>contact.cmsaf@dwd.de</u>

Müller, R. et al. (2015) *Remote Sens., 7*, 8067-8101, doi:10.3390/rs70608067

Pfeifroth, U. et al.. (2018) *J. Geophys, Res., 123,* 1735-1754, doi:10.1002/2017JD027418.

DOI:10.5676/EUM_SAF_CM/SARAH/V003

SARAH-3 – What's new?

- → Improved estimation of surface radiation over snow-covered surfaces by using internally derived daily snow information
- Updated and improved auxiliary data
 - → ERA-5 daily Ozone and Total Column Water Vapor
 - → New spectrally-resolved Surface Albedo data based on MODIS (Blanc et al.)
- Improved estimation of sunshine duration (based on DNI)
- → Covering 1983 to 2020
- New spectral parameters:
 - → Photosynthetic active radiation (PAR)
 - → Daylight (DAL)

SARAH-3: Snow Coverage

Sunshine Duration, 23 March 2013

SARAH-2 SDU (h) SARAH2

SARAH-3

 Substantially enhanced surface irradiance under snowcovered conditions

Snow Mask

SARAH-3

SARAH-3: Snow Coverage

Sunshine Duration, 23 March 2013

SARAH-2 SDU (h) SARAH2 and CDC

SARAH-3

SDU (h) SARAH3 and CDC

- Improved comparison to surface measurements
- Snow-covered situations remain challenging!

Snow Mask

SARAH-3

SARAH-3: Snow Coverage

Surface Radiation, Climatology, March 1991 - 2020

- Substantially enhanced surface radiation in the Alpine region in SARAH-3
- → SARAH-3 compares much better with surface measurements

SIS (W/m2), SARAH2 and GEBA

SIS (W/m2), SARAH3 and GEBA

SARAH-3 – Comparison with SARAH-2

- In general, only small changes
- → SARAH-3 irradiance is higher in alpine regions (snow) and most of the subtropics (albedo)

Surface Irradiance, Decadal Trend

- → Reasonable linear trends in SARAH-3
- General 'brightening' in Europe
- → Unrealistic large brightening in Alpine region, likely due to improved snow detection after 1994

Sunshine Duration, Evaluation, CLIMAT

- → Long-term observations of sunshine duration available
- → Time Series of the bias as a measure for stability
- → Analysis of aerosol impact possible

BIAS, SDU (1983-2020)

Summary

- → SARAH-3: The next editon of the CM SAF SARAH climate data records
- → Includes improved consideration of snow coverage, surface albedo, water vapor, ozone
- → New parameters: DAL, PAR
- → Improved performance best detectable in daily data and sunshine duration
- Currently available via: contact.cmsaf@dwd.de

Extra Slides

Validation Results, SARAH-3

Surface Incoming Solar Radiation (SIS)

Monthly Mean

SIS	N _{mon}	Bias [W/m²]	MAD [W/m²]	SD [W/m²]	StMAE [W/m²]			on > thresh	old	
SARAH-3	2863	2.25	5.32	6.75	5.83	0.93	12.2 (>10 W/m²)		
SARAH- 2.1+ICDR	2863	1.6	5.15	6.87	5.46	0.92	11.1 (>10 W/m²)		40 46 49 0
SARAH-2.1	2453	1.59	SIS	N _{day}	Bias [W/m²]	MAD [W/m²]	SD [W/m²]	StMAD [W/m²]	AC	Frac _{day} > threshold accuracy [%]
SARAH-2	1909	2.03	SARAH-3	84789	2.18	10.9	15.8	11.32	0.96	19.6 (>17 W/m²)
SARAH MVIRI	1672 878	1.27 4.24	SARAH-2.1 + ICDR	l 84815	1.52	11.5	16.8	11.99	0.95	21.4 (>17 W/m²)
IN VIIVI		7.24	SARAH-2.1	72087	1.51	11.70	17.2	11.92	0.95	16.8 (>20 W/m²)

	[\	SIS N/m	_	
accuracy	Th	Та	Op	1
monthly	5	4	3	
daily	12	11	10	1
Inst.	20	15	12	4
stability	1	0.5	0.3	:

Daily Mean

SARAH-2	57128	1.7	SIS	N	Bias [W/m²]	MAD	SD [W/m²]	StMAD [W/m²]	Cor	Frac _{mon}	<u>></u> %1
SARAH	48605	1.1								-	•
			SARAH-3	3,941,01	2.3	24.5	59.4	25.3	/	22.0 (>	30
MVIRI	29790	4.4	tot	8						W/m ²)	
			SARAH-3	2,146,54	4.2	44.9	80.3	47.1	0.97	40.4 (>	30
			day	6						W/m ²)	

30-min

Surface Incoming Solar Radiation (SIS) Individual stations

SID

Surface Incoming Direct Radiation (SID)

Monthly Mean

SID	N _{mon}			MA		SD	StMAD	AC		on > th		old					[\	N/m	1 ²]
		[/	W/m²]	W/	m²]	[W/m ²]	[W/m ²]		accur	acy [%	l					accuracy	Th	Ta	Op
SARAH-3	2708	0	.99	7.84	+)	11.2	9.09	0.90	19.0 (>13W/n	n²)					monthly	8	7	5
SARAH- 2.1+ICDR	2708	0	.70	7.78	3	11.2	8.54	0.90	18.2 (>13W/n	n²)					daily	18	15	12
SARAH-2.1	2347	0	.87	7.8		11.3	8.70	0.89	7.7 (>	20W/m	²)					Inst.	40	30	20
SARAH-2	1828	1	SID		N _{day}	Bias	MAD	SD	StMAD	AC	Era	c _{dav} > tare				stability	5	3	2
SARAH	1587	(SID		I∜day	[W/m ²]	[W/m ²]	[W/m		AC		n ² [%]	ye.						
MVIRI	805	(SARAH-	3	76512	0.92	16.0	24.0	17.58	0.93	25.3	3 (>20W/m ²)						
			SARAH- 2.1+ICDF	2	76537	0.63	17.0	25.5	18.70	0.92	27.2	2 (>20W/m ²)						
	_		SARAH-	2.1	65697	0.79	17.2	25.9	18.85	0.92	19.3	3 (>30W/m ²)						
Daily N	/lear	1	SARAH-	2	51929	0.89	17.6	26 .	SID	N		Bias [W/m²]	MAD [W/m²]	SD [W/m²]	StMAD [W/m²]		Frac _m		> [%]
			SARAH		43549	0.77	17.9	26	SARAH-3	3,762	2,51	0.53	25.7	67.0	28.0	/	15.9	(>	50
			MVIRI		26614	0.74	20.73	31.	tot	9							W/m²)	
							•		SARAH-3 day	2,026	3,60	0.94	47.8	91.28	53.1		29.5 W/m²)	(>	50
								_											

DNI [W/m²]

Th Ta Op

Surface Normal Direct Radiation (DNI)

Monthly Mean

		D:	84.0	D 0D	041440		F							accui	racy	Th	Ta	Op
DNI	N _{mon}	Bias [W/m²]	MA [W/		StMAD [W/m ²]	AC	Frac _{mon} thresh	old [%]						mon	thly	17	15	12
SARAH-3	2627	-0.89	16.7	7 22.1	18.84	0.89	18.5 W/m ²)	(>27						dai	ily	34	30	25
SARAH- 2.1+ICDR	2627	-1.78	16.	5 21.9	17.50	0.88	17.5 W/m²)	(>27						Ins	st.	50	40	30
SARAH-2.1	2263	-1.82	16.4	1 21.9	17.97	0.88	14.7	(>30						stabi	ility	5	3	2
SARAH-2	1794	-0.89	16	DNI	N _{day}	Bias [W/m²]	MAD [W/m²]	SD [W/m²]	StM.		Frac _{day}	> thresh	nold					
SARAH-1	1541	3.25	17	SARAH-3	71331	0.33	31.1	43.3	32.92	0.93	26.1 (>4	4W/m ²)						
	,			SARAH- 2.1+ICDR	71354	-0.69	33.0	46.2	34.83	0.92	28.3 (>4	4W/m ²)						
				SARAH-2.1	60528	-0.82	33.4	46.8	35.71	0.91	32.3 (>4	40W/m ²)						
D	aily	Mear	า	SARAH-2	49075	-0.81	DNI	N		Bias [W/m²]	MAD [W/m²]	SD [W/m²]	StMAD [W/m²]		rac _{mo} hresh		[%]	>
				SARAH	41253	3.8	SARAH-3	3,78	9,08	0.13	51.0	117.6	53.2	/ 2	24.4 (>	· 60	W/m	1 ²)

SARAH-3

day

1,995,31

1

0.22

30-min data

162.01

96.8

103.3

0.92

46.3 (> 60 W/m²)

Photosynthetic Active Radiation (PAR)

Monthly Mean

PAR	N _{mon}	Bias [µmol/m²/s]	MAD [µmol/ m²/s]	SD [µmol/ m²/s]	StMAD [µmol/m²/ s]	AC	Frac _{mon} > 1	target
SARAH- 3	1064	14.5	19.7	24.1	18.84	0.89	3.8 µmol/m ² /s)	(>46

		PAR nol/n	•
accuracy	Th	Та	Op
monthly	46	37	23
daily	92	69	46
Inst.	138	92	69
stability	1	0.5	0.3

Daily Mean

PAR	N _{day}	Bias [μmol/m²/ s]	MAD [μmol/ m²/s]	SD [µmol/ m²/s]	StMAD [µmol/m² /s]	AC	Frac _{mon} > 1 [%]	arget
SARAH- 3	31532	14.7	26.5	32.7	27.25	0.98	3.48 µmol/m²/s)	(>78

Based on data from 10 stations, all with different temporal coverage

Daylight (DAL)

Monthly Mean

			~	******			
DAL	N _{mon}	Bias [kLux]	MAD [kLux]	SD [kLux]	StMAD [kLux]	AC	Frac _{mon} > threshold [%]
SARAH-3	584	2. <u>92</u>	2. <u>92</u>	1. <u>6</u>	3.0	0.8 <u>7</u>	4 <u>8</u> .5 (>2.7 <u>kLux</u>)

		DAL (Lu)		_
accuracy	Th	Та	Op	_
monthly	1.4	1.0	0.7	_
daily	3.4	2.7	2.1	_
Inst.	6.8	5.5	3.4	_
stability	1	0.5	0.3	_

Daily Mean

DAL	Nmon	Bias [kLux]	MAD [kLux]	SD [kLux]	StMAD [kLux]	AC	Frac _{mon} > threshold [%]	
SARAH-3	17775	2. <u>87</u>	3. <u>04</u>	<u>2.3</u>	3. <u>08</u>	0. <u>95</u>	19.2 (>4.8 kLux)	P

Sunshine Duration (SDU)

Monthly Sum

SDU	N _{mon}	Bias [h]	MAD [h]	SD [h]	stMAD	AC	Frac _{mon} threshold [%]	>
SARAH-3	139786	6.24	15.40	20.37	15.43	0.88	26.6 (>20h)	
SARAH- 2.1+ICDR	139786	8.49	16.59	21.28	16.54	0.88	29.5 (>20h)	
SARAH- 2.1	137811	8.45	16.6	21.3	1	0.88	13.7 (>30h)	

Nday

Bias [h]

	SDU [h]				
accurac	Th	Ta	Op		
monthly	20	15	10		
daily 3	1.5	1	0.75		
Inst.					
stability	0.8	0.5	0.3		

Frac_{day} > 1.5 h [%]

Daily	Sum

SARAH-2 117373 7.23 **SDU**

SARAH-3	4,579,221	0.25	1.05	1.64	0.91	23.5
SARAH- 2.1+ICDR	4,575,907	0.30	1.07	1.64	0.91	23.8
SARAH-2.1	2,642,777	0.37	1.01	1.45	0.93	22.8
SARAH-2	2,484,980	0.44	1.35	1.97	0.87	32.7

MAD [h]

SD [h]

AC

Summary, SARAH-3 Validation

	SIS	SID	DNI	PAR	DAL	SDU	Cal
Monthly	5 W/m ²	8 W/m ²	17 W/m ²	20 umol/m²/s	2.6 kLux	15 h	0.1
Daily	11 W/m ²	16 W/m ²	31 W/m ²	27 umol/m²/s	3.4 kLux	1 h	0.2
30-min	24 W/m ²	26 W/m ²	50 W/m ²	NA	NA	-	
Stability	-0.6 W/m ² /dec	based on SIS	based on SIS	based on SIS	based on SIS	based on SIS	based on SIS

General CM SAF

Satellite Application Facility on Climate Monitoring

What we do

Satellite-derived Products of Energy & Water Cycle

Why we do it

Develop
Generate
Archive
Distribute

Monitor
Understand
Adapt

Climate Variability & Climate Change

Climate Data Record + Interim Climate Data Record

Data Access

Web User Interface

- → Easy selection and online ordering
- → Possibility of regular data delivery
- → Postprocessing
 - → Spatial, temporal selection
- → Data format (NetCDF)
- → Download via https or sftp
- → All data free of charge
- EUMETCast
- User Help Desk

https://wui.cmsaf.eu

CM SAF R Toolbox

www.cmsaf.eu/R toolbox

- CM SAF provides the CM SAF R Toolbox (based on the open source software R)
- Designed to access, analyse, and visualize CM SAF (and other SAF) data
- No programming skills required
- Can be used within scripts or as a stand-alone GUI
- → (Video-)Tutorials available

The CM SAF R TOOLBOX — R-based tools for an easy usage of CM SAF NetCDF data PREPARE Extract, unzip, select time range and region, merge. ANALYSE The cmsaf R-package contains more than 60 useful operators. VISUALIZE Visualize spatial data, statistical analysis and 1D-timeseries.

@ DWD 2018

Heliosat + HelSnow method

Surface Irradiance / Sunshine Duration

➤ Spatial and temporal information of surface radiation can accurately be derived from satellite observations, because...

- ... satellites can well detect clouds (= bright) during daytime
- ... clear-sky solar radiative transfer is well simulated assuming auxiliary data (e.g., water vapor, aerosol) is available

R the reflection observed by satellite, **strong signal from clouds in the visible.**

R: Meteosat VIS image

Eff. Cloud Albedo

$$CAL = \frac{R - Rmin}{Rmax - Rmin}$$

R the reflection observed by satellite, **strong signal from clouds in the visible.**

Rmin, monthly minimum per slot & pixel, corrects (filters) the clear sky reflection

R: Meteosat VIS image

"clear sky reflection"

Eff. Cloud Albedo

$$CAL = \frac{R - Rmin}{Rmax - Rmin}$$

R the reflection observed by satellite, **strong signal from clouds in the visible.**

Rmin, monthly minimum per slot & pixel, corrects (filters) the clear sky reflection

Rmax corrects changes in sensitivity and aging of optical instruments.

R the reflection observed by satellite, **strong signal from clouds in the visible.**

Rmin, monthly minimum per slot & pixel, corrects (filters) the clear sky reflection; Rmin_snow

Rmax corrects changes in sensitivity and aging of optical instruments.

Effective Cloud Albedo (CAL) provides the amount of reflected solar radiation relative to clear sky

http://sourceforge.net/projects/gnu-magic/

R the reflection observed by satellite, **strong signal from clouds in the visible.**

R: Meteosat VIS image <

Issue: Snow vs. Clouds

Source: Application of moderate resolution imaging spectroradiometer snow cover maps in modeling snowmelt runoff process in the central Zab basin, Iran

J. Appl. Remote Sens. 2014;8(1):084699. doi:10.1117/1.JRS.8.084699

Issue: Snow vs. Clouds

Status quo:

Separation between cloud and snow problematic (only 3 spectral channels available from historic satellites)

Solution: HELSNOW

- Approach: Separation between Cloud and Snow based on ,motion'
- → Efficient programming (OpenCV: ,optical flow') allows the processing of long time series

