

Swiss Confederation

Postprocessing of gridded of the state of th

Stephan Hemri, Jonas Bhend, Christoph Spirig, Danieles Nerini, Reinhard Furrer, Lionel Moret, and Mark A. Liniger

Motivation

- cGAN postprocessing for hourly cloud cover works¹
 - reference forecasts: gEMOS or dense NN + ECC or Schaake shuffle
 - 2D GAN
 - temporal dependence not considered
- Apply similar cGAN approach to precipitation
 - ideally: hourly 3D GAN in order to sample spatio-temporal scenarios
 - goal: improve univariate and multivariate forecast skill compared to highresolution COSMO-F DMO
 - reality check: work on daily **cGAN still in progress** due to poor skill

¹Dai, Y., & Hemri, S. (2021). Spatially coherent postprocessing of cloud cover ensemble forecasts. Monthly Weather Review, 149(12).

©Hemri et al.

Data and methods I

- Features: COSMO-E 21 member high-resolution (2 km) DMO
- Labels: CombiPrecip gridded precipitation data
 - 1 km resolution
 - blend of gauge observations with radar data
- Focus on JJAs
 - training set: 2014-2018
 - validation set: 2019
 - test set: 2020
- Work in progress, hence results shown only for validation set

©Hemri et al.

Data and methods II

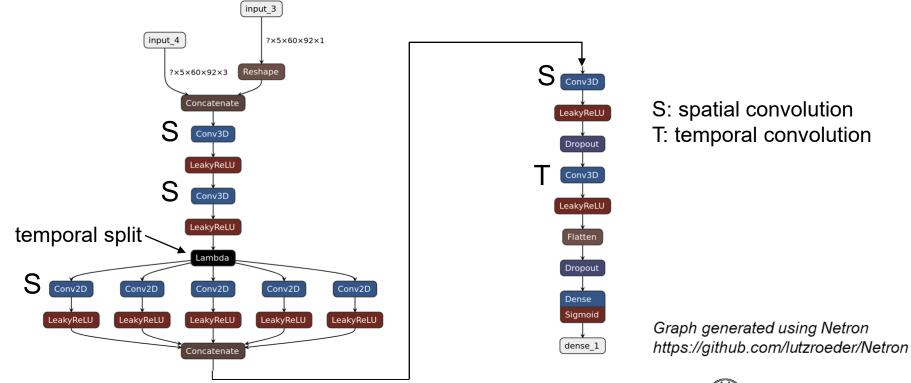
Reference forecasts:

- spatial pooling
- quantile regression

· cGAN:

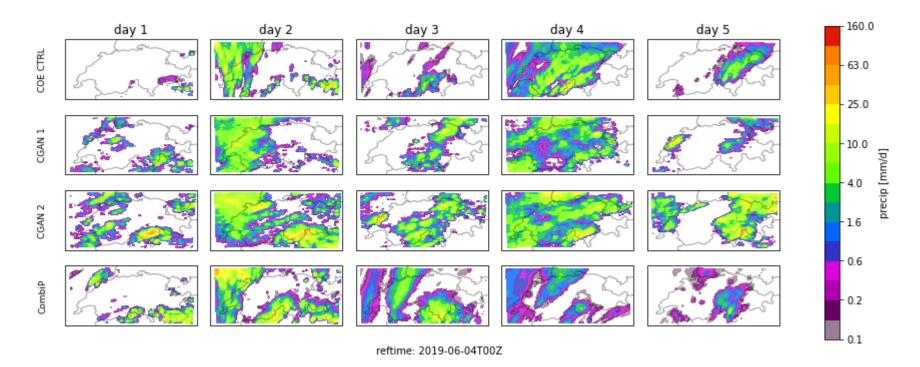
- separated¹ 3D convolutions in generator and discriminator
- split discriminator architecture along lead times/days in order to allow for lead time/day dependent weights

¹ Castro, R., Souto, Y. M., Ogasawara, E., Porto, F., & Bezerra, E. (2021). STconvS2S: Spatiotemporal convolutional sequence to sequence network for weather forecasting. Neurocomputing, 426, 285-298.


©Hemri et al.

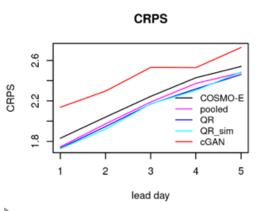
University of Zurich^{UZH}

GAN architecture (discriminator)



MeteoSwiss

Example forecasts



Issues and outlook

- Poor cGAN skill
- Using content loss¹ in generator did improve our model
- Still a lot of room for improvement

¹Harris, L., McRae, A. T., Chantry, M., Dueben, P. D., & Palmer, T. N. (2022). A Generative Deep Learning Approach to Stochastic Downscaling of Precipitation Forecasts. arXiv:2204.02028.

