Supporting material to EGU 2022 presentation 5694 Session OS1.7

Extremely Warm European Summers driven by Sub-Decadal North Atlantic Heat Inertia

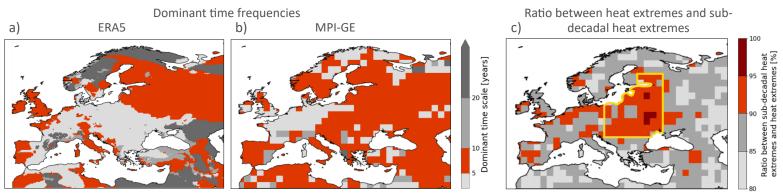
Lara Hellmich^{1,2}, Daniela Matei¹, Laura Suarez-Gutierrez¹, and Wolfgang A. Müller¹

- ¹ Max Planck Institute for Meteorology, Bundesstraße 53, 20146 Hamburg, Germany
- ² International Max Planck Research School on Earth System Modelling (IMPRS-ESM), Bundesstraße 53, 20146 Hamburg, Germany

Link to presentation and additional material:

For questions and comments please feel free to contact me:

Sub-Decadal Variability & Heat Extremes Introduction


- summer temperatures increased by ~1.5°C, largely associated with anthropogenic GHG-concentrations, but overlaid by internal variability of 3-3.5°C [Suarez-Gutierrez et al., 2020]
- mechanisms explaining the internal variability of mean summer temperatures have been found on seasonal to sub- and multi-decadal timescales [e.g. Müller et al., 2020, Ghosh et al., 2016]
- their contribution to extremes variability is not fully established

- we investigate the **sub-decadal** (5-10yr) variability of European summer heat extremes and their potential drivers
- Max-Planck-Institute Grand Ensemble (MPI-GE)
- summer means (JJA) from 1950-2022 (GE Hist + RCP4.5)

- calculation of dominant time frequencies with cross-spectral analysis based on the multi-taper method [Arthun et al., 2016]
- to link the previous finding to heat extremes, we calculate the ratio between all heat extremes and heat extremes on **sub-decadal time scales**

strong agreements between model and reanalysis, but Central Europe stands out in particular

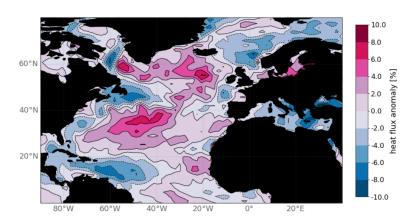

—> this defines region of interest for further analysis

Fig. 1: Dominant time frequencies and their relation to heat extremes. (a),(b) Cross-spectral analysis, performed using the multi-taper method, showing the dominant time scales of European temperature variability in (a) ERA5 and (b) MPI-GE. Color shading in [years]. (c) Ratio between heat extremes (T>90th perc.) and heat extremes on sub-decadal time scales (T>90th perc. and T_{bandpass}>0). This means we define 720 heat extremes as the maximum number of extremes, this number is given by the 90th percentile of our used time series (72 years x 100 ensemble member), and calculate the ratio with heat extremes which exceed the 90th percentile and are in a positive bandpass-filtered phase. Color shading in [%]. Period 1950-2020.

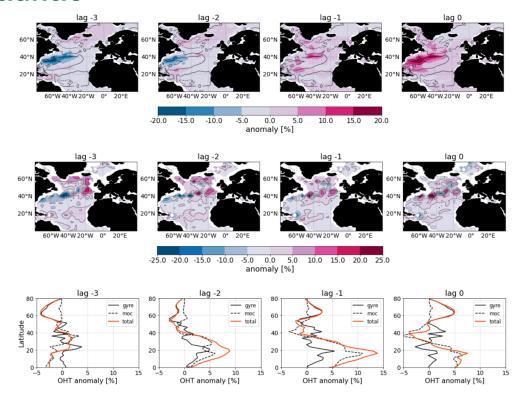
- North Atlantic has high impact on weather/climate conditions over Europe
- especially for sub-decadal processes the memory for several years cannot reside from the atmosphere, whereas oceans can show such a memory

high anomalies between the 5-10y bandpass-filtered heat flux and heat extremes especially in the western and northern part of the North Atlantic —> warming of the atmosphere

Fig. 2: Composites as fraction of variability between 5-10yr bandpass-filtered Atlantic heat flux (latent + sensible) variability and total Atlantic heat flux variability in MPI-GE for different lags prior to heat extremes. Positive values indicate heat flux into the atmosphere. Values in percent. Dots denote significance at a 95% confidence level. Period 1950-2022.

Contribution of the North Atlantic

Barotropic Stream Function


- ... transition from a weak to a strong barotropic stream function.
- ... at lag 0 an intensification and northward shift of **North Atlantic current**.

Ocean Heat Content

- ... positive anomalies along **North Atlantic** current around 40°N —> accumulation of **ocean** heat content.
- ... spatial location of **ocean heat content** anomalies matches with **heat flux** anomalies

Ocean Heat Transport

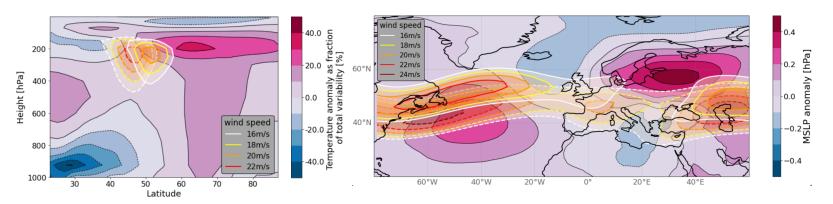
- ... **MOC ocean heat transport** intensifies around 20°N around two years prior heat extremes.
- ... accumulated heat is released at lag 0, mainly by the **sub-polar gyre heat transport**.

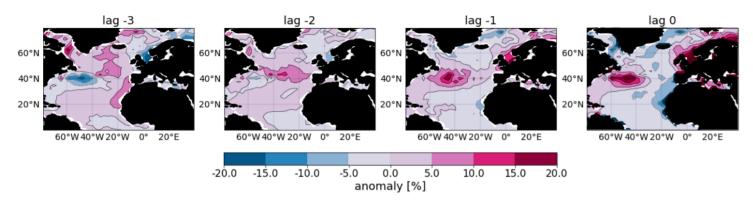
Fig 3: Heat extremes and their relation to ocean quantities. Barotropic Stream Function, Ocean Heat Content, and Ocean Heat Transport. Composites as fraction of variability between 5-10yr bandpass-filtered variability and total variability in MPI-GE for different lags prior to heat extremes. Period 1950-2022.

Atmospheric Pathway

- Vertical Temperature, Sea Level Pressure, and Jet Stream

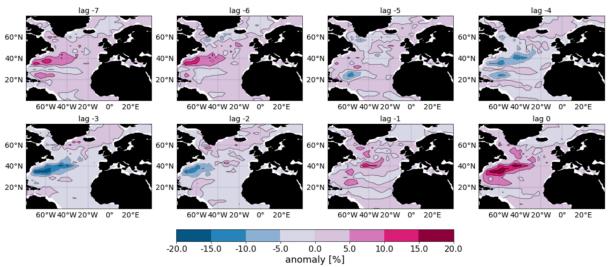
- warming of tropospheric high latitudes and cooling of lower latitudes leads to reduction in wind shear
- northerly position as well as a weakening of the jet stream, favoring stationary weather conditions and the advance of subtropical air masses



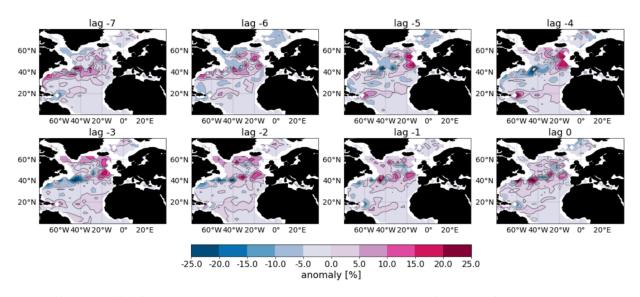

Fig 4: Heat extremes and their atmospheric pathway. a) Composites as fraction of variability between 5-10yr bandpass-filtered temperature variability and total temperature variability in MPI-GE for different lags prior to heat extremes. b) Composite means between 5-10yr bandpass-filtered mean sea level pressure in years showing European heat extremes subtracted by mean sea level pressure mean of all other years in MPI-GE, values given in hPa. The orange contour lines indicate the position of the jet stream (given by the mean zonal wind speed over 200-300hPa) averaged over years showing European heat extremes (solid line) and years showing no heat extremes (dashed line), values given in m/s. Period 1950-2022.

Sub-Decadal Variability & Heat Extremes Summary & Outlook

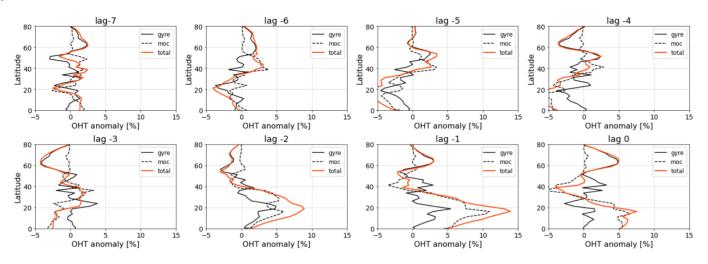
- We show that anomalies in North Atlantic heat inertia lead to heat extremes over Europe.
- The spatial location of these **heat flux** anomalies can be linked to anomalies in **barotropic stream function**, **ocean heat content**, as well as **ocean heat transport** with a certain lag prior heat extremes
- We were able to link **heat extremes** over Central Europe with **atmospheric pathways**, such as **SLP** anomalies and the position of the **jet stream**, with anomalies in the **heat flux** in the North Atlantic.
- The described mechanism is attached to a **full coupled atmosphere-ocean cycle** with 7-10yr period [Martin et al., 2019]
- —> Hellmich et al. (in prep.): Extremely Warm European Summers driven by Sub-Decadal North Atlantic Heat Inertia
- —> Now predictions: investigate whether these mechanisms in the ocean can also be used to predict heat extremes and thus possibly improve the predictability of European summer temperatures.


Appendix

Sea Surface Temperature


Sup. fig. 1: Sea surface temperature. Composites as fraction of variability between 5-10yr bandpass-filtered sea surface temperature variability and total sea surface temperature variability in MPI-GE for different lags prior to heat extremes. Period 1950-2022.

Barotropic Stream Function


Sup. fig. 2: Shift of the barotropic stream function signal. Composites as fraction of variability between 5-10yr bandpass-filtered barotropic stream function variability and total barotropic stream function variability in MPI-GE for different lags prior to heat extremes. Period 1950-2022.

Ocean Heat Content

Sup. fig. 3: Shift of the ocean heat content signal. Composites as fraction of variability between 5-10yr bandpass-filtered ocean heat content variability and total ocean heat content variability in MPI-GE for different lags prior to heat extremes. Period 1950-2022.

Ocean Heat Transport

Sup. fig.4: Shift of the ocean heat transport signal. Composites as fraction of variability between 5-10yr bandpass-filtered ocean heat transport variability and total ocean heat transport variability in MPI-GE for different lags prior to heat extremes. Period 1950-2022.