

Dynamic modelling of a screw actuator for improved locomotion control on various terrains

Walid Remmas, Roza Gkliva, Asko Ristolainen

Centre for Biorobotics, Tallinn University of Technology, Department of Computer Systems, Tallinn, Estonia

Outline of the presentation:

- Context and Problem formulation
- Methodology & Experimental setup
- Results
- Conclusion & Future work

Methodology Results Context & Background Conclusion & Future work

Locomotion in unstructured environments

Legged robots: BigDog (a, Playter et al., 2006), RHex (b, Altendorfer et al., 2001), Titan XI (c, Hodoshima et al., 2007).

Tracked robots: Nanokhod (a, Klinker et al., 2007), Robhaz DT3 (b, Woosub et al., 2004) and Gunryu (c, Hirose et al., 1996).

Methodology Results Conclusion & Future work

Locomotion in unstructured environments

ROBOMINER RM3 prototype

How to model a robot with screw actuators?

Importance:

- Pose estimation
- Control
- Simulations

Context & Background

Methodology & Experimental setup

$$\eta: [x, y, z, \phi, \theta, \psi]^T$$

$$\nu$$
: $[u, v, w, p, q, r]$

$$\tau: \left[\tau_x, \tau_y, \tau_z, \tau_\phi, \tau_\theta, \tau_\psi\right]^T$$

$$\dot{\boldsymbol{\eta}} = J(\boldsymbol{\nu})\boldsymbol{\nu}$$

$$\dot{\boldsymbol{\nu}} = M^{-1}(-g(\boldsymbol{\eta}) - D(\boldsymbol{\nu}) + \boldsymbol{\tau})$$

$$\boldsymbol{\tau} = \boldsymbol{\alpha} B \Omega$$

To identify α and D:

We use two Simple Linear Regressors

$$Y = X\Theta + \epsilon$$

: Known

: Measured

: To be identified

Methodology & Experimental setup

 $\eta: [x, y, z, \phi, \theta, \psi]^T$

 ν : [u, v, w, p, q, r]

 $\tau: \left[\tau_x, \tau_y, \tau_z, \tau_\phi, \tau_\theta, \tau_\psi\right]^T$

 $\dot{\boldsymbol{\eta}} = J(\boldsymbol{\nu})\boldsymbol{\nu}$ $\dot{\boldsymbol{\nu}} = M^{-1}(-g(\boldsymbol{\eta}) - D(\boldsymbol{\nu}) + \boldsymbol{\tau})$ $\boldsymbol{\tau} = \boldsymbol{\alpha} B \Omega$

: Known

: Measured

: To be identified

Methodology Context & Background Results Conclusion & Future work

Results

$$\eta: [x, y, z, \phi, \theta, \psi]^T$$
$$\nu = [u, v, w, p, q, r]$$

$$\tau: \left[\tau_x, \tau_y, \tau_z, \tau_\phi, \tau_\theta, \tau_\psi\right]^T$$

$$\dot{\boldsymbol{\eta}} = J(\boldsymbol{\nu})\boldsymbol{\nu}$$

$$\dot{\boldsymbol{\nu}} = M^{-1}(-g(\boldsymbol{\eta}) - D(\boldsymbol{\nu}) + \boldsymbol{\tau})$$

$$\boldsymbol{\tau} = \boldsymbol{\alpha}B F$$

: Known

: Measured

: To be identified

Results

Context & Background Methodology Results Conclusion & Future work

Results

Methodology Results Context & Background

Conclusion & Future work

Conclusions & Future work

The proposed model can be used to:

- > Estimate the robot's pose.
- Design Model-based controllers.
- Develop simulation frameworks.

Future perspectives:

- Online model identification.
- Include slip detection.
- Develop adaptive closed-loop controllers.

Thank you for your attention!

References:

Klinker, S., Lee, C. G. Y., Wagner, C., Hlawatsch, W., Schreyer, A. M., and Roser, H. P.: Destination Moon and beyond for the Micro rover Nanokhod, Proceedings of the DGLR International Symposium To Moon and beyond, 2007.

Woosub, L., Sungchul, K., Munsang, K., and Mignon, P.: ROBHAZ-DT3: teleoperated mobile platform with passively adaptive double-track for hazardous environment applications, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 1, 33–38, 2004.

Hirose, S., Shirasu, T., and Fukushima, E. F.: Proposal For Cooperative Robot Gunryu Composed of Autonomous Segments, Robot. Auton. Syst., 17, 107–118, 1996.

Playter, R., Buehler, M., and Raibert, M.: Bigdog, Proceedings of the SPIE Defense&Security Symposium, Unmanned Systems Technology, 2006.

Altendorfer, R., Moore, N., Komsuoglu, H., Buehler, M., Brown Jr., H. B., McMordie, D., Saranli, U., Full, R., and Koditschek, D. E.: RHex: a biologically inspired hexapod runner, Auton. Robot., 11, 207–213, 2001.

Hodoshima, R., Doi, T., Fukuda, Y., Hirose, S., Okamoto, T., and Mori, J.: Development of a Quadruped Walking Robot TITAN XI for Steep Slope Operation – Step Over Gait to Concrete Frames on Steep Slopes, Journal of Robotics and Mechatronics, 19, 13–26, 2007.