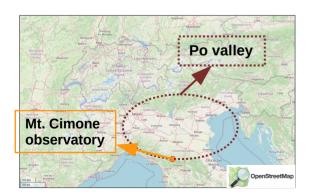
Continuous measurements of the CH_4/CO ratio at the remote site of Mt. Cimone and their application for the estimate of regional CH_4 emissions.

C. Fratticioli¹, P. Trisolino¹, P. Cristofanelli¹, F. Calzolari¹
¹CNR-ISAC - Institute for Atmospheric Sciences and Climate, Bologna, Italy

Motivations


Kuwayama, T., et al. (2019). Source apportionment of ambient methane enhancements in Los Angeles, California, to evaluate emission inventory estimates. Environmental science & technology. 53(6), 2961-2970.

In-situ measurement of CH₄/CO ratio at Mt. Wilson observatory were used to evaluate CH, emissions from Los Angeles city using inventory-based CO emissions

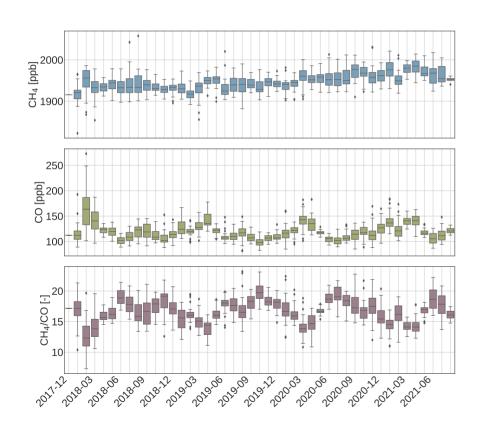
$$M_{CH_4}^{estimated}[t] = \left(\frac{CH_4}{CO}\right)^{in-situ} M_{CO}^{inventory}[t]$$

Evaluated from regressions on hourly CH, and CO measurements at the observatory

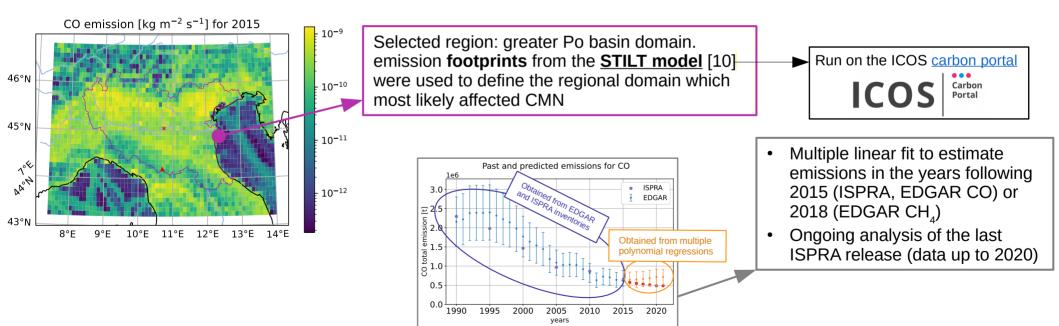
- Is it possible to adopt a similar approach to evaluate CH, emissions occurring over the Northern Italy trough CH₄/CO observed at Mt. Cimone?
- More complex emission region: wider and less homogeneous with respect to Los Angeles

Both rural, urban and mountain areas included in the study domain

A critical assessment of the sensitivity of the considered methodology to different input parameters and settings was carried out.


Time series of CH₄ and CO at Mt. Cimone

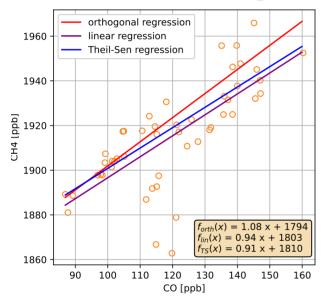
Monthly CH₄ and CO Concentrations and CH₄/CO Ratio at CMN


- The Mt. Cimone (CMN) atmospheric site is operated by CNR-ISAC in collaboration with Italian Air Force
- Global Station within WMO-GAW and class-2 atmospheric site in ICOS-RI

- Timeseries in the period Jan 2018 Dec 2021 were analyzed.
- Measurements were carried out with a CRDS gas analyzer from Picarro following the measurement guidelines defined in ICOS-RI (2020) [2]
- Hourly averaged values considered in this work are a mixed time series composed by (1) a dataset internally produced by CNR-ISAC from Jan to Apr 2018, (2) L2 ICOS Atmosphere Release (May 2018 Jan 2021), ICOS L1 NRT growing time series (Feb- Dec 2021) [3] [4] . ICOS L1 and L2 data can be accessed by https://data.icos-cp.eu/portal/.

Estimation of CH₄ and CO emissions from inventories.

Province-based emission region selection based on **EDGAR** [6,7] (*Emissions Database for Global Atmospheric Research, European Commission Joint Research Center*) and **ISPRA** [8,9] (*Istituto Superiore per la Protezione e la Ricerca Ambientale*) inventories:


EDGAR - spatial resolution: 0.1°x0.1° , time resolution: 1 year ISPRA - spatial resolution: province-based, time resolution: 5 years

Parameters and data selection

Different setup were considered with the goal of defining the **sensitivity** of the results by the **input data** and methodology settings:

CH4:CO orthogonal and linear regression 2019, February, BaDS non-bkg co2_robust

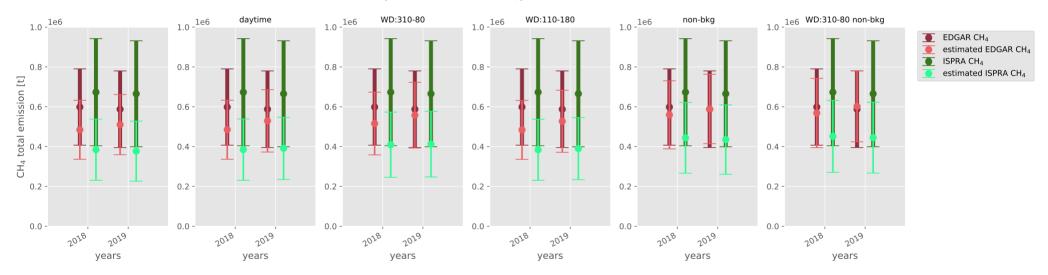
Sensitivity to the **sub-setting** of in-situ data at CMN:

- All data
- Night-time vs Day-time
- Subsetting by wind direction (310°-80°; 110°- 180°)
- Application of statistical selection algorithm (BaDSfit [5]) to select non-background observations.

Sensitivity to the method used to calculate CH4/CO ratio

- Different time aggregation (monthly, seasonal)
- Different fitting calculation (linear, orthogonal, Theil-Sen)

Sensitivity to the source domain boundary selection


- Keeping EDGAR pixels completely inside the source domain
- Keeping EDGAR pixels partially inside the source domain

CH₄ estimated emissions at Mt. Cimone as a function of different setup

Selections over:

- Wind direction (WD)
- Daytime
- Emission inventory (EDGAR, ISPRA)
- non-bkg conditions from BaDSfit algorithm

Wind direction (**WD**) selection + **non-bkg** conditions : Slight improvements with respect to the all data case

Emission inventory (EDGAR, ISPRA):

- Higher differences
- Differences maximised for the ISPRA case study

Discussion

Caveats:

- To define a limited source emission domain (even if corroborated by STILT) is rather arbitrary
- Absolute mixing ratios of CH₄ and CO are used (i.e. assuming that all the CH₄/CO variability were related to regional emissions, transport on longer spatial scales neglected)
- Differences between estimated and inventory emissions are larger in the ISPRA with respect to the EDGAR case studies
- Total emissions for 2018-2019 were extrapolated from past emission values

Next steps:

- To calculate CH₄/CO ratio using deviations from baseline (together with the selection of not-background data) could help in better represent regional emissions
- Extend the analysis to 2020 ISPRA release (already available) and EDGAR 2022 release (still not available)
- Better evaluation of uncertainties related to the presented method

Acknowledgements

Cosimo Fratticioli's and Pamela Trisolino's grants are funded by the National Project Rafforzamento del Capitale Umano CIR01_00019 – PRO-ICOS_MED "Potenziamento della rete di osservazione ICOS-Italia nel Mediterraneo – Rafforzamento del Capitale Umano"

References

- [1] Kuwayama, Toshihiro, et al. "Source apportionment of ambient methane enhancements in Los Angeles, California, to evaluate emission inventory estimates." Environmental science & technology 53.6 (2019): 2961-2970.
- [2] ICOS RI. (2020). ICOS Atmosphere Station Specifications V2.0 (editor: O. Laurent). ICOS ERIC. https://doi.org/10.18160/GK28-2188
- [3] Cristofanelli, P., Trisolino, P., ICOS RI, 2021. ICOS ATC CH4 Release, Monte Cimone (8.0 m), 2018-05-03-2021-01-31, https://hdl.handle.net/11676/D xwBYaUA-pigw4IxFw IhEV
- [4] Cristofanelli, P., Trisolino, P., ICOS RI, 2021. ICOS ATC CO Release, Monte Cimone (8.0 m), 2018-05-03-2021-01-31, https://hdl.handle.net/11676/CtmJt3Rutw 0OOTGB7dpYlkH
- [5] Trisolino, Pamela, et al. "Application of a Common Methodology to Select in Situ CO2 Observations Representative of the Atmospheric Background to an Italian Collaborative Network." Atmosphere 12.2 (2021): 246.
- [6] European Commission Joint Research Center. Global greenhouse gas emissions v6.0. https://edgar.jrc.ec.europa.eu/index.php/dataset_ghg60, 2020.
- [7] European Commission Joint Research Center. Global Air Pollutant Emissions v5.0. https://edgar.jrc.ec.europa.eu/index.php/dataset_ap50, 2019.
- [8] Istituto Superiore per la Protezione e la Ricerca Ambientale. Disaggregazione dell'inventario nazionale. http://emissioni.sina.isprambiente.it/serie-storiche-emissioni/, 2021
- [9] ISPRA, Italian Greenhouse Gas Inventory 1990-2019. National Inventory Report 2021, Rapporti 341/2021, ISBN: 978-88-448-1046-7, https://www.isprambiente.gov.it/it/pubblicazioni/rapporti/italian-greenhouse-gas-inventory-1990-2019-national-inventory-report-2021
- [10] Nehrkorn, Thomas, et al. "Coupled weather research and forecasting-stochastic time-inverted lagrangian transport (WRF-STILT) model." Meteorology and Atmospheric Physics 107.1 (2010): 51-64.