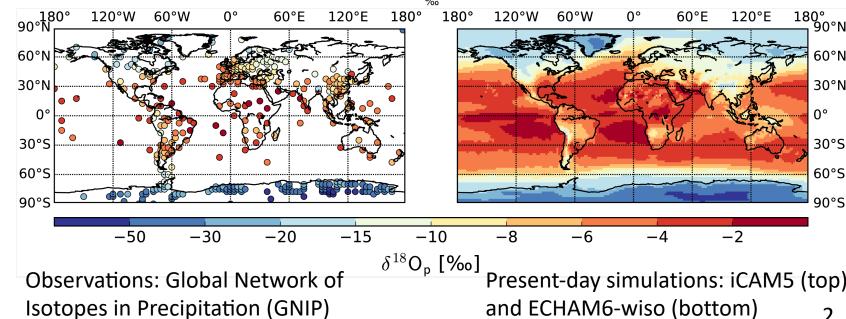

Evaluating atmospheric simulations of the Last Glacial Maximum using oxygen isotopes in ice cores and speleothems

André Paul¹, Thejna Tharammal², Alexandre Cauquoin³, and Martin Werner⁴

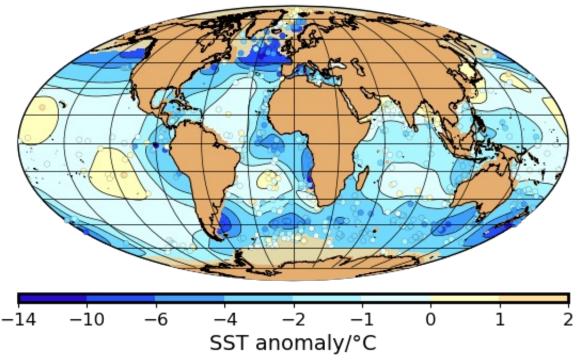
- 1) MARUM Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
- 2) Center for Atmospheric and Oceanic Sciences, Indian Institute of Science, Bangalore, India
- 3) Institute of Industrial Science, The University of Tokyo, Kashiwa, Chiba, Japan
- 4) Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Bremerhaven, Germany



In this study, we used version 5 of the isotope-enabled Community Atmosphere Model (iCAM5).

NCAR iCAM5 (Nusbaumer et al., 2017) at medium resolution (1.9° x 2.5°, 30 vertical levels)

For comparison purposes, we will use ECHAM6-wiso (Werner et al., 2016) at medium resolution (T63, ~1.875° x 1.875°, 30 vertical levels).

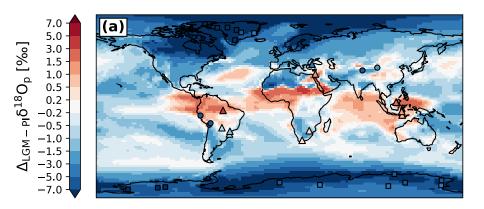

Different efforts of combining model and data yield different results for mean tropical sea-surface temperature cooling.

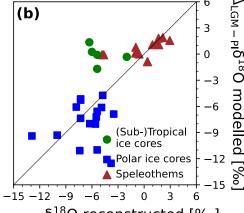
Reference	Mean/°C	Min/°C	Max/°C	Confi-dence
CLIMAP	-0.8			
MARGO	-1.5	-2.1	-0.9	
Annan and Hargreaves (2013, in prep.)	-1.6	-2.3	-0.9	95 %
Lea et al. (2004)	-2.8	-3.5	-2.1	
Ballantyne et al. (2005)	-2.7	-3.7	-1.7	
Leduc et al. (2017) – alkenones	-2.3	-3.1	-1.5	
Leduc et al. (2017) – Mg/Ca	-2.4	-3.2	-1.4	
Tierney et al. (assimilated)	-3.5	-3.7	-3.3	95 %
Tierney et al. (data only)	-2.5	-2.8	-2.2	95 %

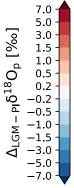
We used two different sets of sea-surface boundary conditions, both based on the new "Glacial Ocean Map" (GLOMAP).

Temperature differences in °C between the Last Glacial Maximum and today for winter in the northern hemisphere (DJF). *Colored points:* locations of the 600 sediment cores included in the statistical analysis. *Yellow-brownish areas:* reconstructed sea-ice extent

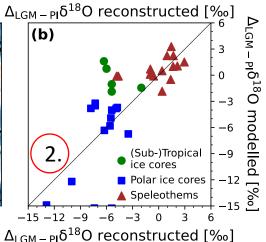
Sensitivity experiment	Sea-surface boundary conditions
GLOMAP	Monthly climatology of near-seasurface temperature anomaly and sea-ice extent during the LGM (Paul et al., 2021).
GLOMAP with additional tropical cooling	As above, but a Gaussian-shaped anomaly of up to 1°C was applied to the tropics. Tropics South Pole North Pole Sin(\$\phi\$) North Pole






As a result, there were (1) a larger positive anomaly in south-east Asia and (2) only slightly smaller misfits over Greenland.


iCAM5 (2°) with reconstructed seasurface conditions (GLOMAP, 30-a mean)

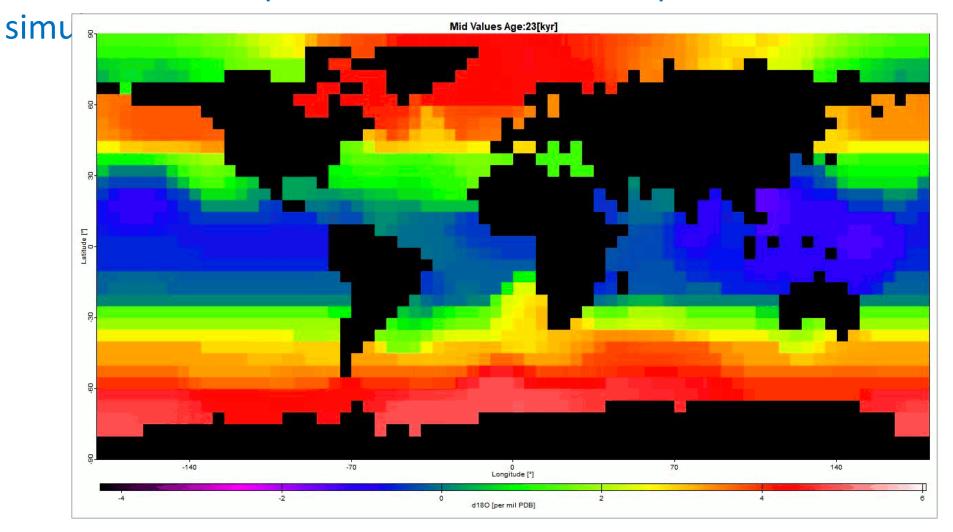


iCAM5 (2°) with reconstructed seasurface conditions (GLOMAP with tropical anomaly, 15-a mean)

The additional tropical cooling leads to an only slightly improved comparison with the Greenland and tropical ice-core.

Experiment		Coefficient of determination R ²	Root-mean square error RMSE/‰
iCAM5 – prescribed GLOMAP SBCs	1.10	0.39	5.3
iCAM5 – prescribed GLOMAP SBCs with tropical anomaly	0.99	0.38	4.8

Experiment	Greenland RMSE/‰	Antarctic RMSE/‰	Tropical RMSE/‰	Speleothemes RMSE/‰
iCAM5 – prescribed GLOMAP SBCs	10.75	2.22	5.31	2.15
iCAM5 – prescribed GLOMAP SBCs with tropical anomaly	9.46	2.50	5.28	2.15


South-polar ice-core data: Vostok, Dome F, EDC, EDML, Taylor Dome, Talos, Byrd, Siple Dome, Law Dome, WDC North-polar ice-core data: GRIP, NGRIP, NEEM, Camp Century, Dye 3, Renland, Agassiz (Sub-) Tropical ice-core data from Risi et al. (2010), speleothem data from SISAL compilation (after Comas-Bru et al., 2019)

Mulitza et al. provide a new World Atlas of late Quaternary Foraminiferal Oxygen and Carbon Isotope Ratios suitable for comparison to *transient* climate

Evolution of planktonic foraminiferal $\delta^{18} O_c$ over the past 23 ka in steps of 0.5 ka.

Mulitza et al. (ESSD, https://doi.org/10.5194/essd-2021-337, 2022), Fig. 3

