

Scaling invariance behaviour of thermal fluxes from an extensive green roof

Leydy Alejandra Castellanos Diaz¹, Pierre-Antoine Versini¹, Olivier Bonin², and Ioulia Tchiguirinskaia¹

- 1. Ecole des Ponts ParisTech, HM&Co, Champs-sur-Marne, France (levydy.castellanos@enpc.fr)
 - 2. Université Gustave Eiffel- Ecole des Ponts ParisTech, LVMT, Champs-sur-Marne, France

NP3.2 Climate Variability Across Scales and Multifractals in Urban Geosciences

Context

Analysis of the scale-invariant properties of heat fluxes related to the evapotranspiration (ET) flux, such as the structure function parameter of the refraction index of air (C_n^2) and the air temperature (T) in the Blue Green Wave, using the Universal Multifractal framework.

- The Blue Green Wave is an extensive green roof of 1 ha, located in the Ecole des Ponts ParisTech (France)
- Measuring of path-averaged ${C_n}^2$ over the 190 m with a Large Aperture Scintillometer LAS MKI every 10 min. The path-length between transmitter and receiver of LAS MKI pass over the BGW.
- The path-averaged ${C_n}^2$ measured by the LAS MKI is mainly due to temperature fluctuations (Moene, 2003): Monitoring of the air temperature next to the receiver unit with a CNR4 radiometer.

Methodology

1. The power spectral density

The power spectral density corresponds to the second-order moment statistics.

$$E(f) \sim f^{-\beta}$$

f is the frequency β is the spectral exponent

$$\beta = 1 + 2H - K(2)$$

H is the Hurst exponent K(2) is the scaling moment function

2. The structure function

The structure function enables to fully characterise the variability of the flux across scales over several orders of statistical moments q.

$$S_q(r) = \langle |u(x+r) - u(x)|^q \rangle$$

u velocity increments

$$S_q(r) = \epsilon^{-q/3} r^{q/3} \propto r^{\zeta(q)}$$

 $\zeta(q)$ is the scaling exponent function

The curve $\zeta(q)$ vs. q:

- For a monofractal process: $\zeta(q)$ follows the power law qH.
- For a multifractal process: $\zeta(q)$ does not follow the power law qH, which is affected by the nonlinearity of K(q) from intermittent and multifractal processes.

3. Universal Multifractal (UM)

The UM framework enables the characterisation of K(q) with three scale invariant parameters α , C_1 and H (Schertzer & Lovejoy, 1987):

$$K(q) + Hq = \begin{cases} \frac{C_1}{\alpha - 1} (q^{\alpha} - q) & \alpha \neq 1 \\ C_1 q \ln q & \alpha = 1 \end{cases}$$

Lévy index α , indicates the extent of multifractality ($0 \le \alpha \le 2$):

- Monofractal fields, $\alpha = 0$
- Maximal occurrence of extremes (log normal multifractal), $\alpha=2$

Mean singularity C_1 , measures the clustering of the average field intensity and fractal codimension of the average field:

• $C_1 = 0$ for uniform field

Hurst exponent H, measures the degree of non-conservation of the average field:

H = 0 conservative field

K(q) and the scale invariant parameters α , C_1 for a conservative field (H=0) can estimated through Trace Moments or Double Trace Moments Technique :

4. <u>Trace Moments</u> (Schertzer & Lovejoy, 1987)

The statistical moments of order q of a scale invariant field ϵ at a given resolution λ , scales with the resolution λ :

$$\langle \epsilon_{\lambda}^{q} \rangle \approx \lambda^{K(q)}$$

$$C_{1} = K'(1)$$

$$\alpha = C_{1}/K''(1)$$

$$= \frac{outler\ scale}{observation\ scale}$$

5. <u>Double Trace Moments</u> (Lavallée et al. 1993)

Trace Moments analysis on a renormalised η th power of the field ϵ_{λ} .

$$\langle \boldsymbol{\epsilon}_{\lambda}^{(\eta)q} \rangle \approx \boldsymbol{\lambda}^{K(q,\eta)}$$
 $K(q,\eta) = K(q\eta) - qK(\eta)$
 $K(q,\eta) = \eta^{\alpha}K(q)$

The data-set:

December 2019

January 2020

Measurements of ${\cal C}_n^{\ 2}$ and T with a LAS MKI and a CNR4 respectively, in December 2019 and January 2020.

Heat Flux	Collection time	Sample length	Sample frequency	
C_n^2	December 2019	1024	1 Hz, 10 min	
	January 2020		average	
T	December 2019	2048	1 Hz, 5 min	
	January 2020		average	

Results

The power spectral density

December 2019

January 2020

- Fluctuations of C_n^2 and T in both periods exhibit a linear scaling behaviour.
- Spectral slope β of C_n^2 roughly equal to 1.6 (~5/3 of isotropic and homogeneous turbulence, Kolmogorov 41)
- Spectral slope β of T roughly equal to 2 (\sim 11/5 of scaling stable stratified turbulence, Bolgiano-Obukhov).

7.5

10.0

12.5 15.0 17.5 20.0

December 2019

2.5

5.0

7.5

10.0

12.5 15.0

17.5 20.0

- Scaling behaviour of the ${C_n}^2$ and T, between 600 s and 8.5 h, and 300 s and 8.5 h respectively.
- Nonlinearity of $\zeta(q)$ given by K(q).

Results

Trace Moments/Double Trace Moments

December 2019

Characterisation of UM parameters

Period	December 2019		January 2020				
Flux/Parameter	α	C_1	α	C_1			
Trace Moments							
C_n^2	1.839	0.106	1.879	0.10			
T	1.702	0.055	1.680	0.073			
Double Trace Moments							
C_n^2	1.97	0.11	1.85	0.10			
T	1.625	0.056	1.587	0.075			

Conclusions & Perspectives

- Scale invariant parameters α and C_1 of ${C_n}^2$ fluctuations during both periods of analysis were higher than the T, which indicates strong multifractality.
- C_n^2 measurements by the LAS MKI were not only affected by the temperature fluctuations, but additional turbulent processes that have a stronger impact on the heat convection than conventionally expected (e.g., wind speed).

Future work involves:

- Development of a new measurement campaign of heat fluxes, related to the ET from vegetated structures in urban environments, at different spatial scales.
- Analysis of the heat fluxes spatial variability from the new measurement campaign through the UM framework.

References

- Lavallée, D., Lovejoy, S., Schertzer, D., & Ladoy, P. (1993). Nonlinear variability and landscape topography: Analysis and simulation. Fractals in Geography, 158–192.
- Moene, A. F. (2003). Effects of water vapour on the structure parameter of the refractive index for near-infrared radiation. Boundary-Layer Meteorology, 107(3), 635–653. https://doi.org/10.1023/A:1022807617073
- Schertzer, D., & Lovejoy, S. (1987). Physical modeling and analysis of rain and clouds by anisotropic scaling multiplicative processes. https://doi.org/10.1029/JD092ID08P09693

Acknowledgments

The authors acknowledge the financial support from ANR EVNATURB project and the Chair Hydrology for Resilient Cities (endowed by Veolia) of the École des Ponts ParisTech.

