

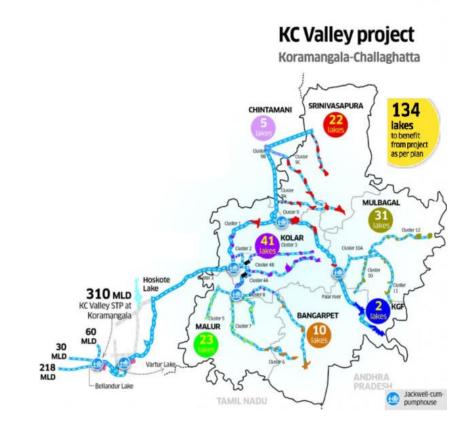
HS5.12 EGU22-57

Process modification and low-cost intervention of an old sewage treatment plant to improve biological nutrient removal

Reshma Mohan Thattaramppilly^a, Lakshminarayana Rao^b, Mohan Kumar Mandalagiri S^c, and Chanakya Hoysall Narayana^b

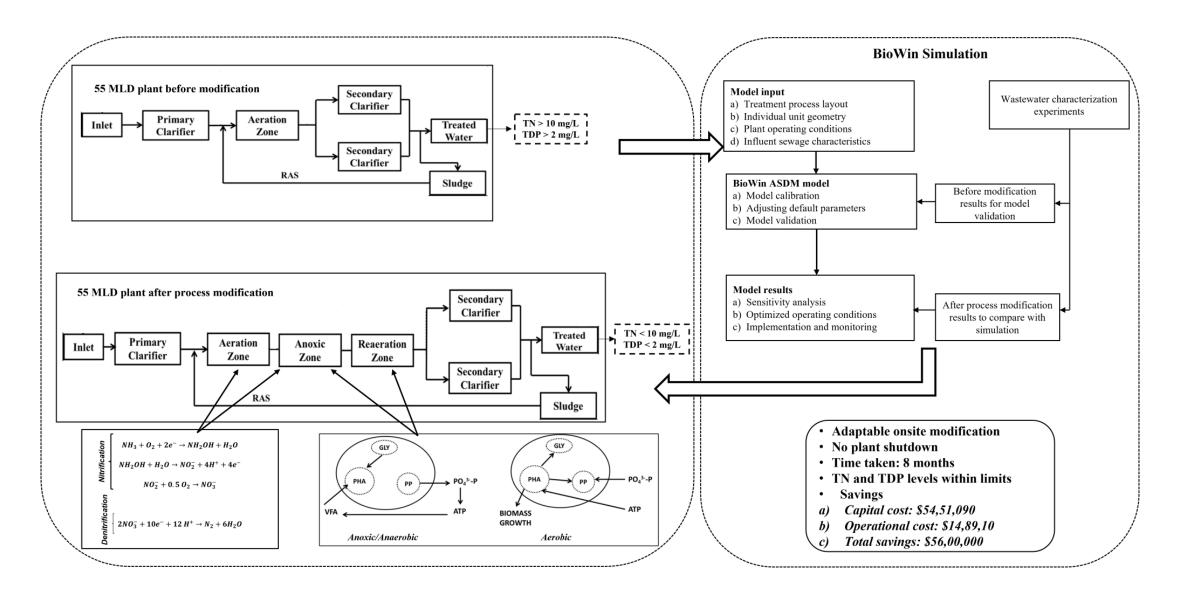
^aInterdisciplinary Centre for Water Research, Indian Institute of Science, Bangalore, India

^bCentre for Sustainable Technologies, Indian Institute of Science, Bangalore, India


^c(Former) Department of Civil Engineering, ICWaR, IFCWS and RBCCPS, Indian Institute of Science, Bangalore, India

Contact: reshmat@iisc.ac.in

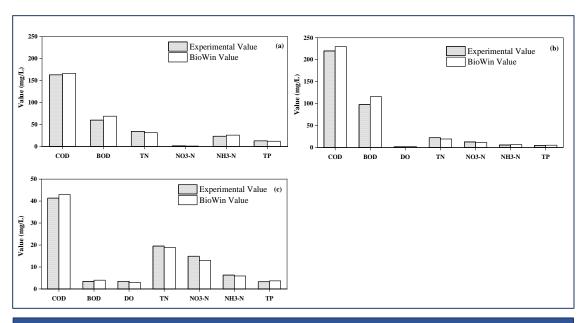
Introduction


- Treated water STP generally discharged into nearby flowing surface water body
- Water improves its quality through natural processes before it is picked up by another city downstream
- Urbanization growth of cities reducing distance treated water travels between adjacent cities
- Authorities continuously revise discharge standards STPs to be constantly upgraded
- Up-gradation **process modifications** /retrofitting with modern machinery
- Retrofitting expensive -time and resources
- Modify treatment process mathematical models
- Activated sludge models (ASM) **BioWin**© **software**

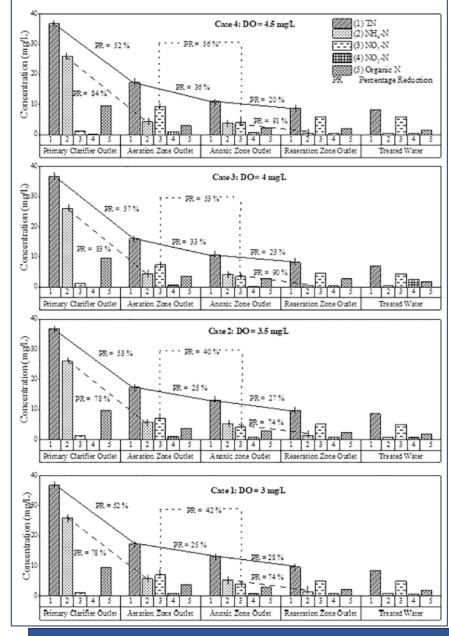
- Study process modifications using BioWin© its implementation on existing operational STP (**KC** valley 55 MLD) meet new discharge standard
- Hypothesized creation of virtual anoxic zones -bioreactor coupled with modifications operating parameters – HRT, DO, MLSS and R ratio - result in SNDN and EBPR
- Model was validated validated model used to identify optimum conditions process modifications
- Several sensitivity studies -to assess combined effect of various operating conditions

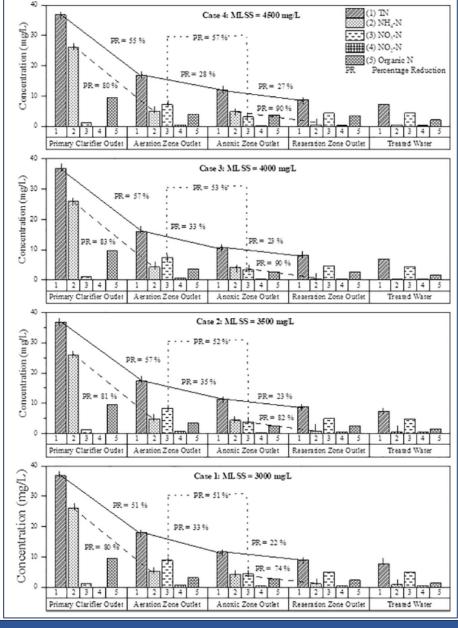
Parameters	Units	K&C Valley 55 MLD Unit Raw Sewage Characteristics	K&C Valley 55 MLD Unit Treated Water Characteristics	Treated Water Discharge Standards CPHEEO 2013
pH Value	-	8.5 ± 1.0	7.0 ± 1.0	6.5-9.0
Total Suspended solids		230 ± 10	22 ± 5	< 10
Biochemical Oxygen Demand (5 day at 25°C)		193 ± 5	6.4 ± 1	< 10
Chemical Oxygen demand	mg/L	448 ± 10	39 ± 5	< 50
Total Nitrogen		39.2 ± 3	20 ± 2	< 10
Ammonical Nitrogen		28.2 ± 2	5.1 ± 3	< 5
Dissolved P		15.3 ± 2	3.5 ± 2	< 2
Fecal Coliform	(MPN/100 ml)	10E-06 ± 1 E-06	190 ± 10	< 230

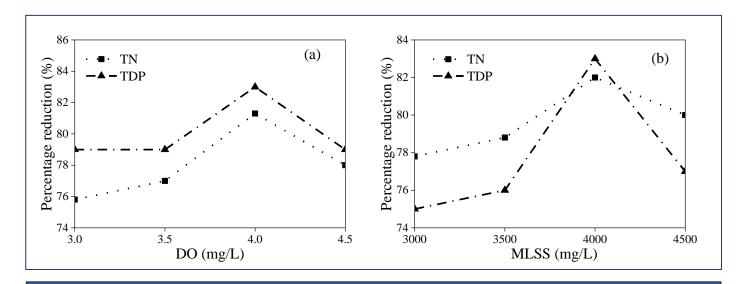
BioWin Model



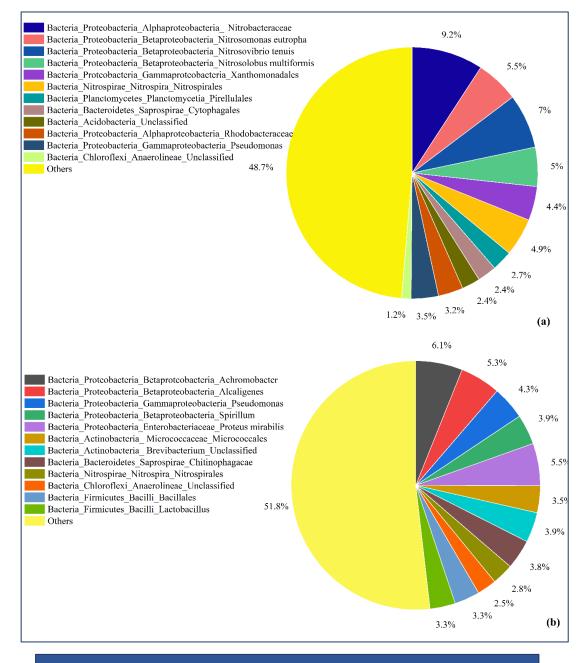
KC valley 55 MLD unit with blowers for air supply



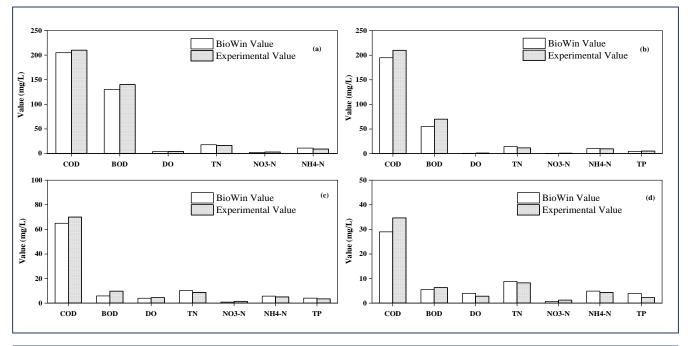

Model Validation & Sensitivity Analysis


Comparison of experimental and BioWin© simulation values (baseline scenario) at (a) Primary clarifier outlet (b) Aeration tank outlet and (c) Treated water

- Relative error between simulation value & experimental value 4.9%, 5.6, 2.0, 6.0, 5.0, 6.1 and 2.5% for COD, BOD, DO, TN, NH4-N, NO3-N and TDP (as PO4)
- Error was within acceptable limit of 10 %
- **Developed BioWin**© **model considered validated** for baseline scenario (before modification)


Simulation results of variation of (1) TN, (2) NH₄-N, (3) NO₃-N, (4) NO₂-N and (5) Organic N at each stage of treatment and at different Do and MLSS concentration; PR: Percentage reduction (calculated between each stage of treatment) of TN, NH₄-N and NO₃-N.

PR_o: Percentage reduction (raw sewage to treated water) of TN and TDP (as PO₄) with (a) DO concentration (b) MLSS concentration in aeration and reaeration zones


- TN and TDP concentration increased with DO of
 4 mg/L to improved SNDN by autotrophs and
 heterotrophs
- At higher DO of 4.5 mg/L- PR of TN decreased attributed to inadequate HRT in anoxic zone to denitrify higher NO₃-N formed

- At higher DO levels efficiency of TDP (as PO4)
 synthesis by PAOs lower high DO reduces uptake
 of PO4-P
- Potentially leave lower BOD for anaerobic processing
- Reason for higher TDP (as PO4) at DO of 4.5 mg/L.

Microbial class composition (in percentage) in (a) aerobic and (b) anoxic samples

- There was **clear difference in bacterial community** in aeration and anoxic samples
- Aeration samples abundant in ammonia and nitriteoxidizing bacteria
- Anoxic samples rich in denitrifying bacterial classes
- Presence of **anaerobic PAOs** detected **anoxic** samples
- Confirms hypothesis proposed modification successful in EBPR

Comparison of experimental and BioWin© simulation values (after modification of plant) of (a) Aeration zone outlet (b) Anoxic zone outlet (c) Reaeration zone outlet (d) Treated water

Water quality before and after treatment

- Relative error -simulation & experimental values lower than acceptable upper limit of 10%
- Treated water COD 29 mg/L -within limit of 50 mg/L.
- BOD5 **5.5 mg/L** within upper limit of 10 mg/L
- TN 8.8 mg/L within upper limit of 10 mg/L.
- Validated introduction of nitrification denitrification zones (aeration- anoxic-reaeration) optimized operating conditions successful meet revised discharge standards.
- TP $4.25 \pm 0.5 \text{ mg}$ P/L -within discharge limit of 4.5 mg P/L

Estimated, actual cost and savings (in dollars) for the implementation of proposed modification

Sl.	Particulars	Estimated amount	Actual amount	Savings
No.		(In dollars)	(In dollars)	(In dollars)
1	Civil works including piping, erection, testing and commissioning	\$ 20310	0	\$ 20310
2	Supply of mechanical and electrical			\$ 608300
	(a) Addition of submersible	\$ 608300	0	
	diffusers			\$ 2038540
	(b) Addition of blowers for air	\$ 2038540	0	
	supply	0.1.17.100		* 4 4 7 4 0 0
	(c) Addition of pipes and valves	\$ 147490	0	\$ 147490
	(d) Addition of 110 KW motor	\$ 33960	0	\$ 33960
	feeder for blowers			
	Total	\$ 2828290	0	\$ 2828290
3	Chemical cost for a year			
	(a) Alum	\$ 700000	0	\$ 700000
	(b) Polyelectrolyte	\$ 1902490	0	\$ 1902490
	Total	\$ 2602490	0	\$ 2602490
4	Operating cost for a year	\$ 548910	\$ 400000	\$ 148910
5	Total cost	\$ 6000000	\$ 400000	\$ 5600000

- Modifications implemented in plant minimum process intervention resource
 investment & without shutting down plant
- Time for implementation & stabilization -8 months
- Cost for implementation only US\$ 0.4
 million against initial estimate of US\$ 6
 million
- Without shutting down plant operation, constructing new reactors
- Significant improvement treated water
 quality achieved in a short period of time

Conclusion

- Existing 55 MLD bioreactor divided virtually into aeration, anoxic and re-aeration zones BioWin model
- Identified the **optimum conditions**
- TN & TDP reduced 20 mg/L to 8 mg/L and 3.5 mg/L to 0.9 mg/L
- Capital cost saving US \$ 5.6 million
- Adaptable onsite modifications successful with minimal plant shutdown
- Process modification- applied to other STPs developing countries

Reference:

Mohan T, R. et al. (2022) 'Achieving biological nutrient removal in an old sewage treatment plant through process modifications – A simulation and experimental study', Journal of Water Process Engineering. Elsevier Ltd, 45(July 2021), p. 102461. doi: 10.1016/j.jwpe.2021.102461.