

Inverting spatially low resolved electricity system modeling results: How feasible are they when dis-aggregated into high resolution?

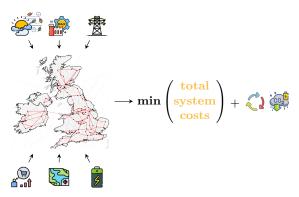
Martha M. Frysztacki^a May 25th, 2022

Co-authors: Prof. Dr. Tom Browna, b

Institutions: a Karlsruhe Institute of Technology (KIT),
Institute for Automation and Applied Informatics

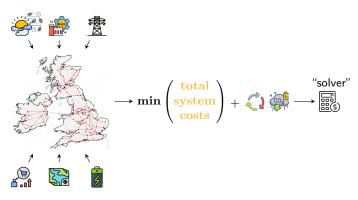
^bTechnical University of Berlin (TUB)

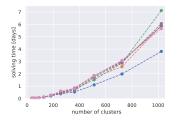
Study uses the open source electricity system model PyPSA-EUR.

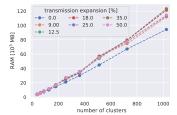


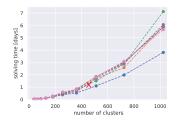
Study uses the open source electricity system model PyPSA-EUR.

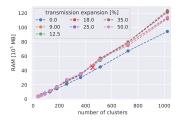
PyPSA minimises the total system costs, subject to constraints to account for climate targets, physics & electrical laws.

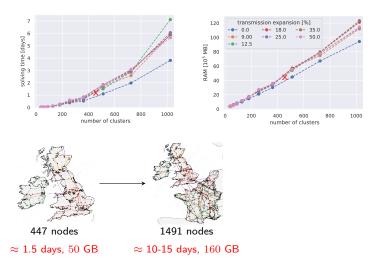



Study uses the open source electricity system model PyPSA-EUR.


PyPSA minimises the total system costs, subject to constraints to account for climate targets, physics & electrical laws.

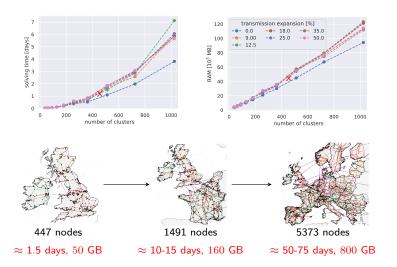


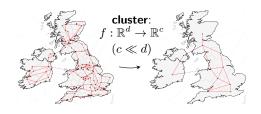


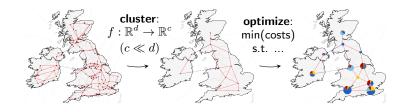


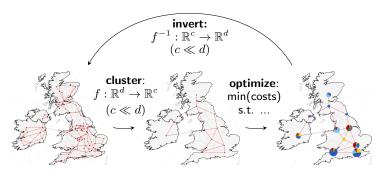
447 nodes

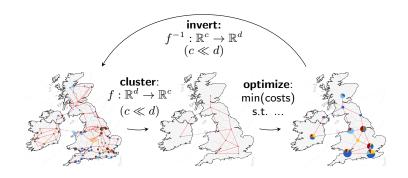
pprox 1.5 days, $50~\mathrm{GB}$

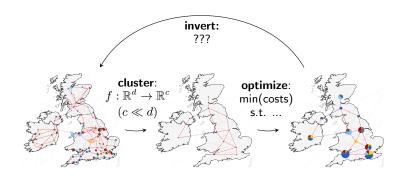



Usually, the network is reduced using some kind of aggregation.


Usually, the network is reduced using some kind of aggregation.


And then passed to the "solver".


But it is not clear, how feasible these results are with respect to the original problem.


And: Is there a "best way" of feeding the results back into original model?

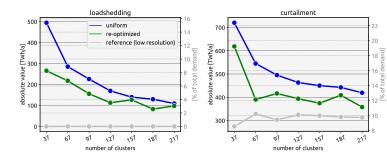
And: Is there a "best way" of feeding the results back into original model?

Three approaches to dis-aggregate results: 1. uniform

Abbreviation	Explanation
uniform	uniformly distribute resulting optimal capacity of a cluster
	across associated high-resolution nodes
re-optimized	
min excess	

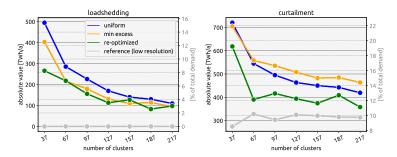
Three approaches to dis-aggregate results: 2. re-optimized

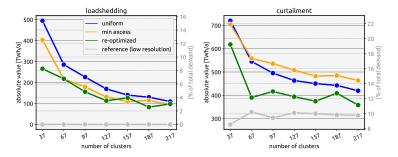
Abbreviation	Explanation
uniform	uniformly distribute resulting optimal capacity of a cluster
	across associated high-resolution nodes
re-optimized	within each cluster, solve the full minimization problem
	with additional constraint that total capacities of reference
	model and high resolution model agree.
min excess	

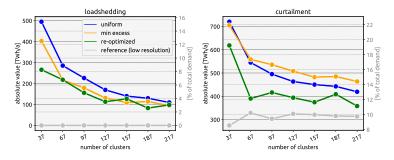


Three approaches to dis-aggregate results: 3. min excess

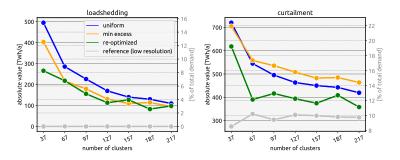
Abbreviation	Explanation	
uniform	uniformly distribute resulting optimal capacity of a cluster	
	across associated high-resolution nodes	
re-optimized	within each cluster, solve the full minimization problem	
	with additional constraint that total capacities of reference	
	model and high resolution model agree.	
min excess	minimize "excess electricity" (custom objective) within	
	each cluster such that total capacities of reference model	
	and high resolution model agree.	



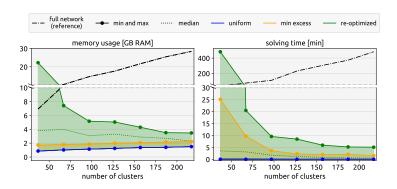


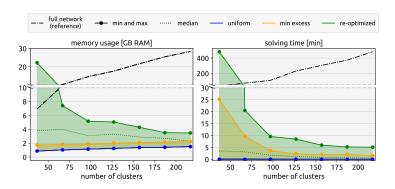


 \Rightarrow Load shedding in "min excess" similar to "re-optimized" results and 1-5% lower than in "uniform". (++)



- \Rightarrow Load shedding in "min excess" similar to "re-optimized" results and 1-5% lower than in "uniform". (++)
- \Rightarrow Curtailment in "min excess" 1-2% higher than in "uniform" and 4-7% higher than in "re-optimized". (-)




- \Rightarrow Load shedding in "min excess" similar to "re-optimized" results and 1-5% lower than in "uniform". (++)
- \Rightarrow Curtailment in "min excess" 1-2% higher than in "uniform" and 4-7% higher than in "re-optimized". (-)
- ⇒ Dis-aggregated results of a 200 nodes reference model can not cover 2-4% of electricity demand, regardless of the dis-aggregation method.

 \Rightarrow Re-optimizing can result in heavy computational burden, in few cases heavier than the original problem.

	Implementation	Solving Time	Memory (RAM)	Results Quality
uniform	1	✓	✓	X
min excess	×	✓	✓	✓
re-optimize	×	X	X	/

✓ indicate a reasonable trade-off, entries with a X indicate an inadequate compromise.

Thank you for your attention... Questions?

License

unless otherwise stated, copyright lies with Martha Frysztacki.

Back-Up Slides

Outlook (Future Research).

- Research possibly better suited inverse functions.
- Adapt all proposed dis-aggregation methods to include transmission expansion.
- ▲ For min excess: more sophisticated distribution of storage, e.g. include in objective function.
 - Currently, $G_{n,\mathrm{H2}} \sim G_{n,\mathrm{onwind}}$ and $G_{n,\mathrm{battery}} \sim G_{n,\mathrm{solar}}$. Better distribution of storage could avoid more load shedding and curtailment.
- △ Adapt all these dis-aggregation methods to include carbon budgets or develop new ones. We only considered a carbon budget of 0.

Three approaches to dis-aggregate results.

Abbreviation	Explanation		
uniform	uniformly distribute the obtained capacity of a cluster c to		
	its associated nodes, i.e.		
	$G_{c,s} \mapsto \frac{1}{ N_c } \begin{pmatrix} G_{c,s} \\ \dots \\ G_{c,s} \end{pmatrix} \in \mathbb{R}^{ N_c }$		
min excess	minimize excess energy within each cluster c , i.e.		
	$\min_{G_{n,s}} \sum_{\substack{n \in N_c, \\ s,t}} \left[\bar{g}_{n,s,t} G_{n,s} - d_{n,t} - 0.7 \sum_{\substack{l_{(i,j)} \in \mathcal{L}: \\ i = n \lor j = n}} F_{(i,j)} \right]^+$		
	$\begin{array}{l} s.t. \; \sum_{n \in N_c} G_{n,s} = G_{c,s} \; \text{and} \; G_{n,s} \leq G_{n,s}^{\max} \; \; \forall n \in N_c. \\ \text{within each cluster c, solve the full minimization problem} \\ \text{with the additional constraint } \sum_{n \in N_c} G_{n,s} = G_{c,s}. \end{array}$		
re-optimized	within each cluster c , solve the full minimization problem		
	with the additional constraint $\sum_{n \in N_c} G_{n,s} = G_{c,s}$.		

Data I

usage	source	details	
land use	CORINE	https://land.copernicus.eu/ pan-european/corine-land-cover/ clc-20127tab=metadata	
land use	Natura 2000	https://www.eea.europa.eu/ data-and-maps/data/ natura-10#tab-metadataa	
offshore regions	EEZ	http://www.marineregions.org/ disclaimer.php	
country & synchronous zone borders	NUTS3	https://ec.europa.eu/eurostat/web/ gisco/geodata/reference-data/ administrative-units-statistical-units	
time series demand	OPSD	https://data.open-power-system-data.org/ time_series/2019-06-05/README.md	
time series wind	atlite (ERA5)	https://github.com/PyPSA/atlite	
time series solar	atlite (SARAH-2)	https://github.com/PyPSA/atlite	

