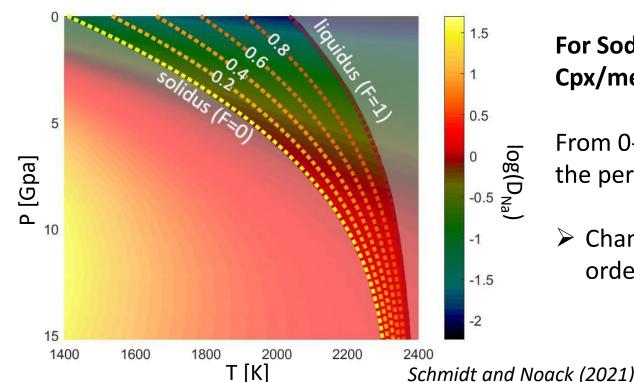

DFG

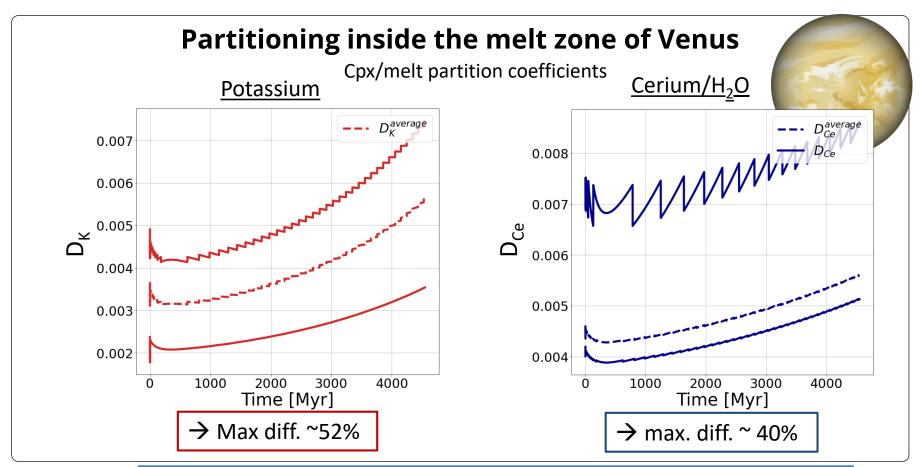
Applying locally calculated partition coefficients for radiogenic heat sources and volatiles to interior evolution models of terrestrial planets

Julia M. Schmidt and Lena Noack Freie Universität Berlin, Germany



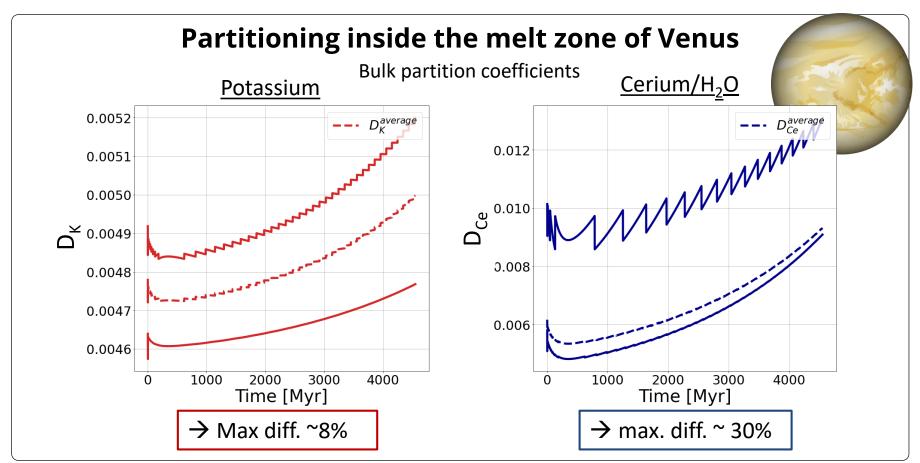
Partition Coefficient – The influence of P and T

For Sodium in Cpx/melt:

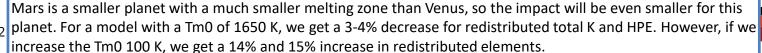

From 0-15 GPa along the peridotite solidus:

Changes up to 2 orders of magnitude!

Schmidt and Noack (2021)

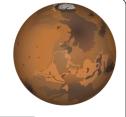

Local P-T dependent partition coefficient calculations could have an impact on the modeled redistribution of an element and therefore (for HPE and volatiles) on the thermal evolution and outgassing of a planet. Here, we apply a P-T dependent partitioning code to a 1D interior evolution code.

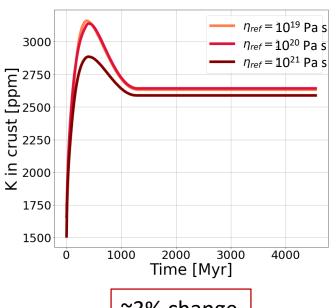
For the P-T range of a melting zone inside Venus, cpx/melt partition coefficients vary for Potassium $^{\sim}52\%$ and for Cerium $^{\sim}40\%$. Potassium is an impotant heat producing element (HPE) and Cerium has the same partitioning behavior as H_2O inside the upper mantle.

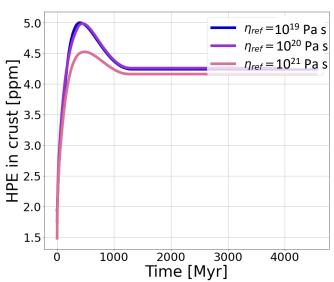


For the same melting zone inside Venus, bulk partition coefficients only vary for potassium ~8% and for Cerium still ~30%. Thus, the impact of the model seems to be small for HPE but larger for water.

Influence of mantle starting temperature 1600K 1600K 2800 **Fixed literature Ds** - 1650*K* 1650K crust [ppm] 2600 2400 22000 2000 crust [ppm] 3.5 1700K $\eta_{ref} = 10^{21} \, Pa \, s$ 1600-1700 K: 1600-1700 K: 15% increase 14% increase .⊑ 2.5 H PE 2.0 **∠** 1800 1600 For 1650 K: For 1650 K: 1.5 1400 3% decrease 4% decrease 4.5 2800 1600K 1600K P-T dependent Ds 4.0 2600 crust [ppm] 1700K 1700K $\eta_{ref} = 10^{21} \, Pa \, s$ crust [ppm] .⊑ ^{2.5} ⊞ _{2.0} .⊆ ¥ 1800 Taylor et al. (2006): 2000-6000 ppm K on 1600 Martian surface 1.5 1400 3000 1000 2000 4000 1000 2000 3000 4000 Time [Myr] Time [Myr]






Influence of reference viscosity

Fixed literature Ds

$$T = 1650 \text{ K}$$
 10^{19} Pa s

~3% change

~3.5% change

In contrast to the mantle starting temperature, the reference viscosity η_{ref} (used to calculate the viscosity with the Arrhenius law of diffusion creep) has only a very small effect on the amount of the redistributed elements.

Conclusions

Calculations for Cerium (H₂O) have a larger impact on the **bulk** partition coefficients than for HPE.

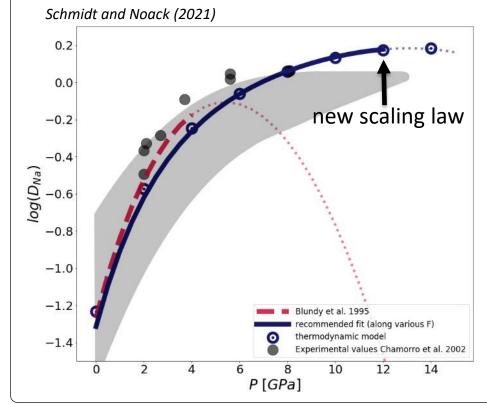
❖ Partition coefficient calculations have a larger effect on the HPE and volatile redistribution for planets with larger melting ranges.

- ❖ For smaller planets with smaller melting ranges, other starting parameters have a larger impact on the redistribution:
 - Small effect of calculated Ds and reference viscosity
 - ➤ Largest impact with changing mantle starting temperature

References

Schmidt, J.M. and Noack, L. (2021): Clinopyroxene/Melt Partitioning: Models for Higher Upper Mantle Pressures Applied to Sodium and Potassium, International Journal On Advances in Systems and Measurements, 14 (1&2), 125-136.

Taylor, G.J. et al. (2006): *Bulk composition and early differentiation of Mars*, J. Geophys. Res., 111, EO3S10.


Wood, B. and Blundy, J.D. (2021): A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt, Contrib Mineral Petrol (1997) 129, 166-181.

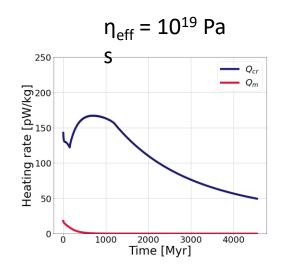
Additional Material

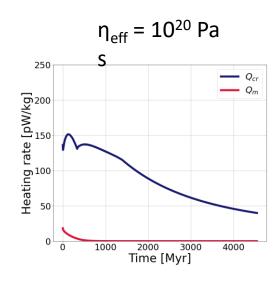
Parameterization results

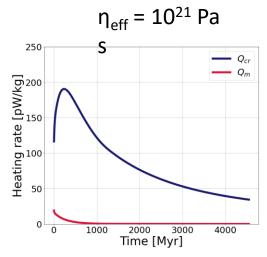
New scaling law:

$$D_{Na} = exp\left(\frac{2183 + 2517P - 157P^2}{T} - 4.575 - 0.5149P + 0.0475P^2\right)$$

- Along the solidus: Fits well very well to thermodynamic model
- Rises up to 12 GPa
- Fits very well to literature data

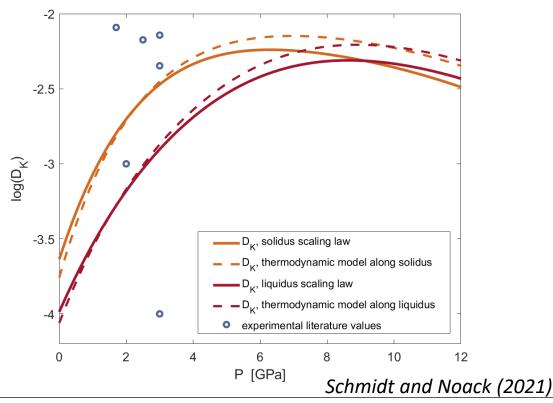

 D_{Na} scaling law used to calculate D_{Na} in cpx/melt. We can use D_{Na} as a reference to model partition coefficients for other trace elements.



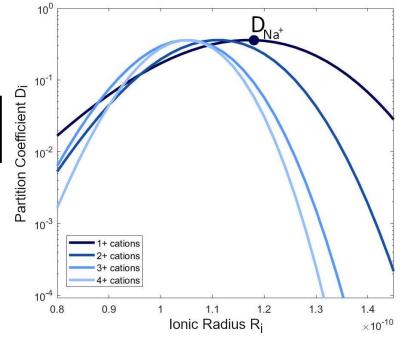

Influence of reference viscosity in the 1D model

Fixed literature Ds

$$T = 1650 K$$



Potassium partitioning (Cpx/melt)


Partition Coefficient Modelling

Model by Wood et al. (1997):

$$Di = \frac{D_0 * exp \left[-4\pi E_{M2} N_A \left[\frac{r_0}{2} (r_0 - r_i)^2 + \frac{1}{3} (r_0 - r_i)^3 \right] \right]}{RT}$$

Partition ceofficients of different charges vary depending on E and r_0

Clinopyroxene/melt partition coefficients

