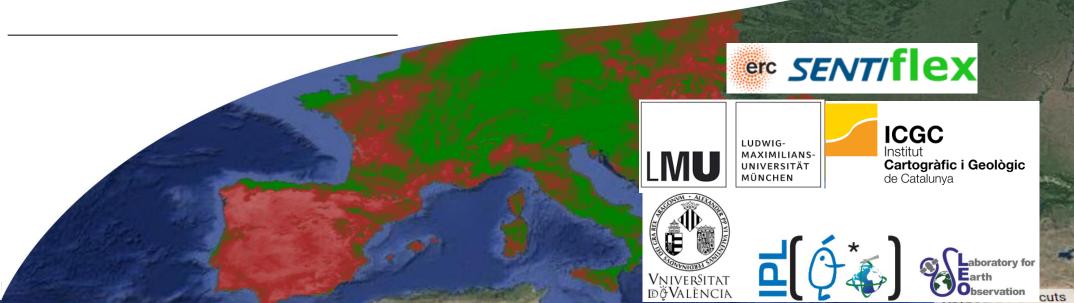


May 24th 2022

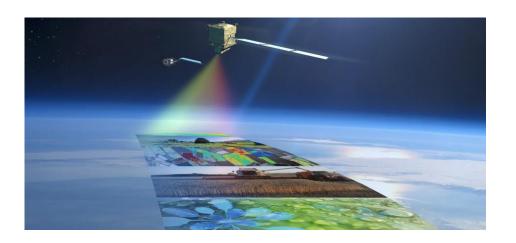
Imagery ©2022 NASA, Terral


Monitoring vegetation traits over Europe using top-of-atmosphere Sentinel-3 data in Google Earth Engine

Pablo Reyes-Muñoz & co-authors

LEO: Jochem Verrelst, Matías Salinero-Delgado, Juan Pablo Rivera, Pablo Reyes-

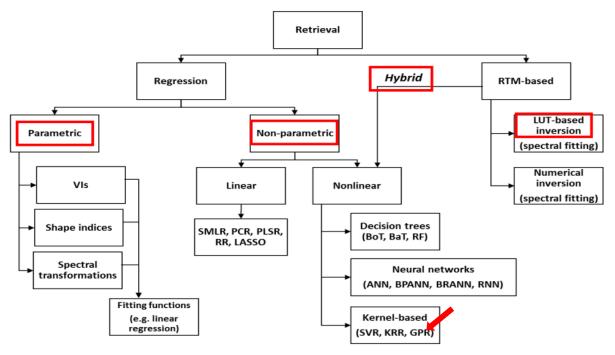
Muñoz


LMU: Katja Berger ICGC: Luca Pipia

Mapping of vegetation traits from Sentinel 3-OLCI in the context of the FLEX mission

- Large scale mapping of LAI (Leaf Area Index), FAPAR (Fraction of Absorbed Photosynthetically Active Radiation), FVC (Fractional Vegetation Cover) and Chlorophyll at moderate spatial resolution (300 m)
- Retrievals from TOA S3-OLCI radiance images provided by a cloud computing environment (Google Earth Engine)
- Complementing information acquired by the upcoming FLEX mission monitor photosynthesis activity

--- Sampled function #1

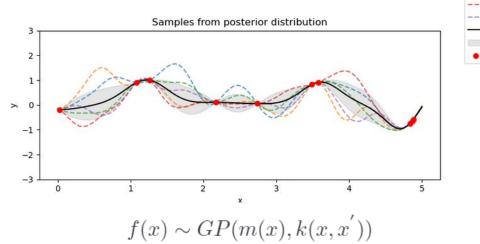

± 1 std. dev.

Observations

Sampled function #2

Sampled function #3 Sampled function #4 Sampled function #5

Taxonomy of retrieval methods

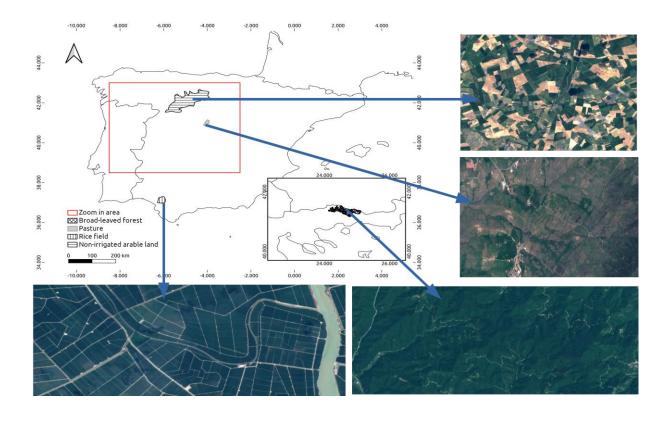


towards operational processing

Verrelst, J et al. (2019). Quantifying vegetation biophysical variables from imaging spectroscopy data: a review on retrieval methods. Surveys in Geophysics, 40(3), 589-629.

Gaussian Process Regression:

A probabilistic ML algorithm

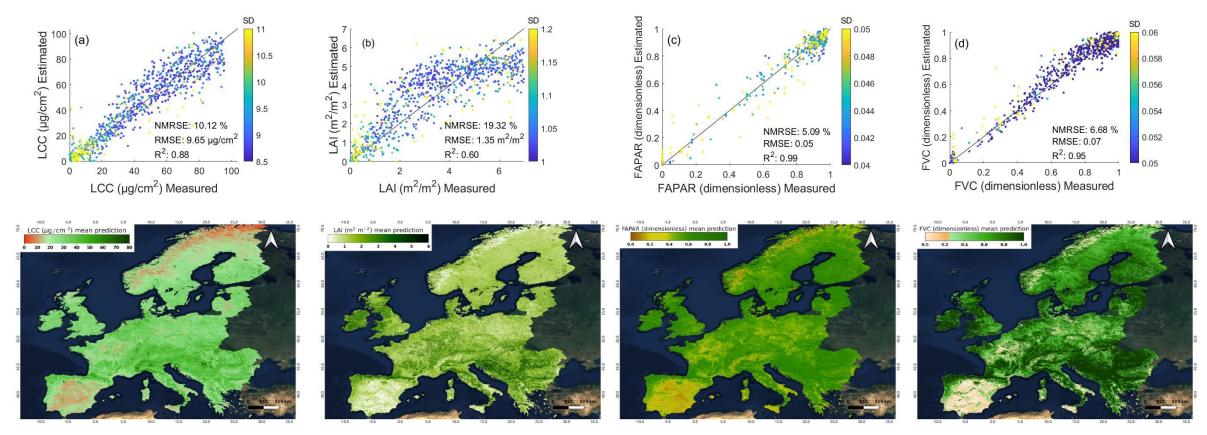

Training and running the models

 Simulations through SCOPE RTM coupled with 6SV

Variable	Distribution	on Min	Max	Mean	SD
Leaf structure & biochemistry					
N (Leaf structure parameter [-])	Gaussian	1	2.7	1.5	0.5
LCC (Chlorophyl a,b content, μg/cm ²)	Uniform	0	95.6	-	-
Cxc (Carotenoid content, μg/cm ²)	Gaussian	0	20	10	10
Cdm (Dry matter content, g/cm ²)	Gaussian	0.002	0.02	0.005	0.003
Cw (Leaf water content, cm)	Gaussian	0.005	0.035	0.012	0.006
Canopy structure					
LAI (Leaf Area Index, m ² /m ²)	Uniform	0	7.0	-	-
LIDF (Leaf Inclination, rad)	Uniform	-1	1.0	-	-
Soil					
SMC (Soil Moisture Content, %)	Gaussian	5	55	25	12.5
BSM Brightness	Gaussian	0	0.9	0.5	0.25
BSM Lat (°)	Gaussian	20	40	25	12.5
BSM Long (°)	Gaussian	45	65	50	10
Geometry					
SZA (Sun Zenith Angle, °)	Uniform	20	40	-	-
OZA (Observation Zenith Angle, °)	Uniform	-10	10	-	-
RAA (Relative Azimuth Angle, °)	Constant	180	180	-	-

Model Variables	Units	Range	
Atmospheric variables: 6SV			
O ₃ Column concentration	[amt-cm]	0.25-0.35	
Columnar Water Vapor	$[g \cdot cm^{-2}]$	0.4 - 4.5	
Aerosol Optical Thickness	unitless	0.05-0.5	
Angstrom coefficient	unitless	0.05-2	
Henyey-Greenstein asymmetry factor	unitless	0.6-1	

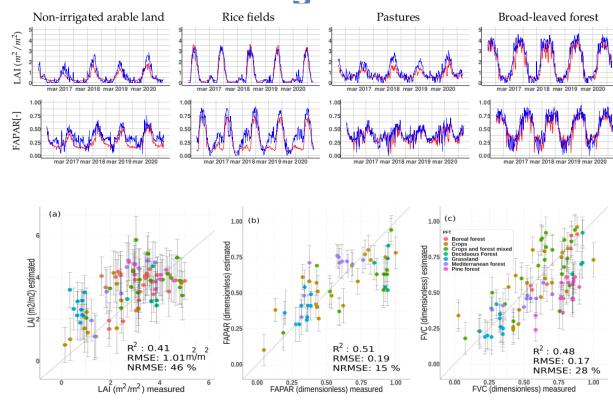
 S3-TOA-GPR models for time-composed large scale mapping and time series over homogeneous land cover types

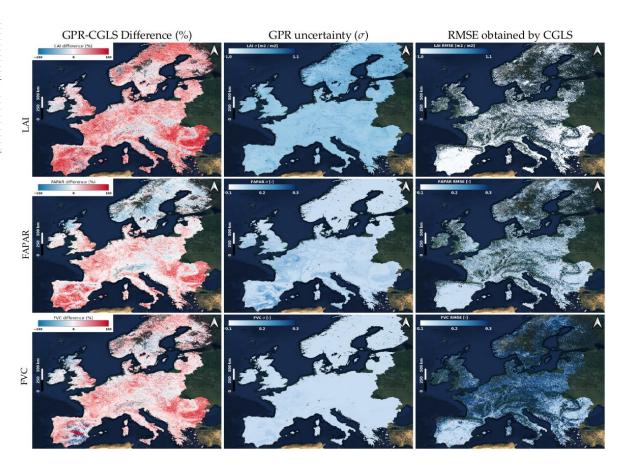

Intro

Met

Res

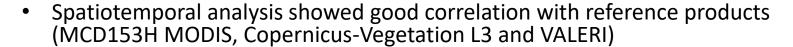
Con


Theoretical performance and graphical results

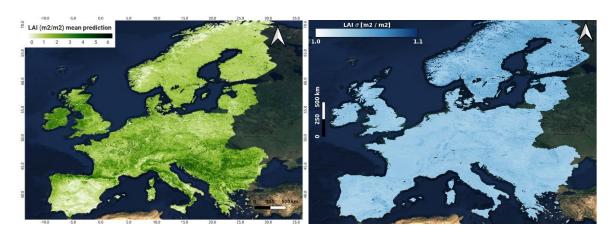

- Vegetation traits maps at european scale
- Good theoretical performance in all cases
- Spatial distribution meets expected ranges

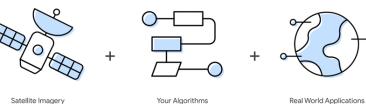
Con

Validation against reference products: MCD15A3H, COPERNICUS-Vegetation and VALERI network

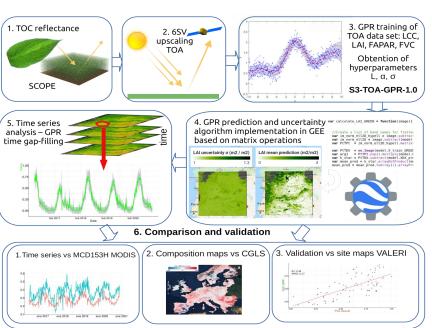


- Similar temporal patterns as MCD153H MODIS
- Good fitting with Vegetation products offered by Copernicus




Conclusions

- Workflow for mapping vegetation traits at continental scale.
- **Uncertainties** as an indicator of quality of the models when predicting from real data.



Potential uses: ecological studies, carbon cycle, support for FLEX mission

Thank you!

Questions?

Acknwoledgment

Email: pablo.reyes@uv.es

Jochem Verrelst (PhD advisor)
Katja Berger
Luca Pipia
Matias Salinero
Juan Pablo Rivera Caicedo

