

Degradation of mercury (Hg) signals on incipient weathering refines use of Hg as a volcanic paleoproxy

Junhee Park¹, Holly Stein^{1,2}, Svetoslav Georgiev^{1,3}, Judith Hannah^{1,2}

¹AIRIE Program, Colorado State University, Fort Collins, CO 80523-1482 USA (Juni.Park@colostate.edu) ²Institute for Geosciences, University of Oslo, 0316 Oslo, Norway ³Geological Institute, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria

Introduction

Mercury signals have been used as an indicator of LIPs.

Hg/TOC can be misleading for extremely weathered samples (Charbonnier et al., 2020)

What if sediment is *incipiently* weathered?

Geological setting

Organic-rich shale from the Upper Permian Ravnefjeld Formation

GRL – East Greenland (drill core & outcrop)
MNS – Mid Norwegian shelf (drill core)

Identifying the host of Hg

- Positive correlation with TOC – main host of Hg
- → Organic matter

- Sulfide and clay
- → ruled out by negative correlations with S and Al

Reason for Hg change

Principal component analysis reveals that

- (1) depositional conditions differ between GRL and MNS
- (2) Hg concentrations decrease during incipient weathering

Conclusions

Thank you so much for your attention! Any questions?

Contact me at – Juni.Park@colostate.edu

Identification of weathering is essential prior to interpretations of paleoenvironmental conditions based on the Hg geochemistry of outcrop samples.