

and transport model, to Alpine scenarios

Corti M.^{1*}, Gatti F.², Abbate A.¹, Papini M.¹, Longoni L.¹, ¹ Department of Civil and Environmental Engineering, Politecnico di Milano, Milan, Italy ² MOX - Department of Mathematics, Politecnico di Milano, Milan, Italy

Introduction

- Natural disasters → critical problem both in terms of economic losses and casualties.
- Frequency of landslide and flooding events expected to increase in relation to climate change.
- Italy 2020: 12 victims, over 3'000 evacuated people (CNR & IRPI, 2021).

SEDIMENT EROSION AND TRANSPORT MODELS

The SMART-SED model

SMART-SED: Sustainable Management of sediment transport in reposnSE to climate change conditions (Project funded by Fondazione Cariplo).

Few simple inputs → open data

- Raster maps: DEM, land cover, granulometric composition of soils,
- Meteorological data (rain and temperature).

Outputs:

- Liquid and solid discharge at selected outpoints per time-step,
- Raster maps (per simulated day): water velocity components, sediment and water heights, infiltration, erosion.

250m resolution 5m resolution 000809 529000 532000 532000 532000

(from Bonaventura, L., Gatti, F., Menafoglio, A., Rossi, D., Brambilla, D., Papini, M., & Longoni, L. (2021). An efficient and robust soil erosion model at the basin scale.)

p: T > Tthr

Drainage + Slope

Peculiarities:

- **Downscaling** of an online open-access soil database (SoilGrids) \rightarrow particle size fractions necessary to model infiltration f and hydraulic conductivity k_c ;
- Automatic determination of the drainage zones;
- Adaptive time step;
- Automatic handling of a wide range of transients.

CONCEPTUAL MODEL:

Hydrology

ATMOSPHERE

GRAVITATIONAL LAYER

 $p: T < T_{thr}$

Snow

Arrows: vertical and horizontal fluxes,

Erosion

Sediment vield

ERODIBLE LAYER

Soil

- Erosion model: Gavrilovic EPM
- Solid flux: Smart and Jaeggi formula,
- Infiltration: SCS-CN method,
- Snow-melting rate: Degree-Day approach,
- Evapotranspiration: Hargreaves model.

Applicability of Smart-SED: work flow

- Calibration of the model parameters → empirical parameters for erosion, runoff, infiltration,
- Validation → field surveys and monitoring of a case study in Southern Alps,
- 3. Evaluation of the effects of **climate change** on the catchment
- → temperature and rainfall data after statistical downscaling of General Circulation Model scenarios.

Downscaling technique from "Groppelli, B., Bocchiola, D., & Rosso, R. (2011). Spatial downscaling of precipitation from GCMs for climate change projections using random cascades: a case study in Italy. Water Resources Research, 47(3)".

Calibration and validation of the model

The state of the s

- Case study: the Caldone catchment, in Northern Italy.
- Calibration and validation of the model allowed by the presence of two "control points".

Tank filling measures → total station + aquatic drone

CATCHMENT	MAX	MIN
AREA	ELEVATION	ELEVATION
28 km ²	2'170 m asl	197 m asl

Hydrometer

Validation results

- Water discharge → good results compared to the data from the hydrometer (0 < NSE < 1),
- Sediment discharge → evaluated from sediment tank filling → solid volume,

Reliable tank filling estimation.

Nash-Sutcliffe Efficency Index

NSE

0.43

$$NSE = 1 - \frac{\sum_{i=1}^{nobs} (Q_{mod} - Q_{obs})^{2}}{\sum_{i=1}^{nobs} (Q_{obs} - \overline{Q}_{obs})^{2}}$$

Sediment volume relative error

- 11%

Climate change scenario - results

Conclusions and future work

 After the calibration of the model parameters, the application of Smart-SED on a catchment in Southern Alps gave realistic results both in terms of water and sediment discharge,

In a **climate change** scenario, Smart-SED shows a great increase of the sediment discharge that

may result in a higher risk for the city downstream the river.

FUTURE WORK

- Implementation of groundwater table and slope processes,
- Research on gully and rill erosion and on bar dynamics,
- Improvements of the numerical framework (adaptive mesh).

