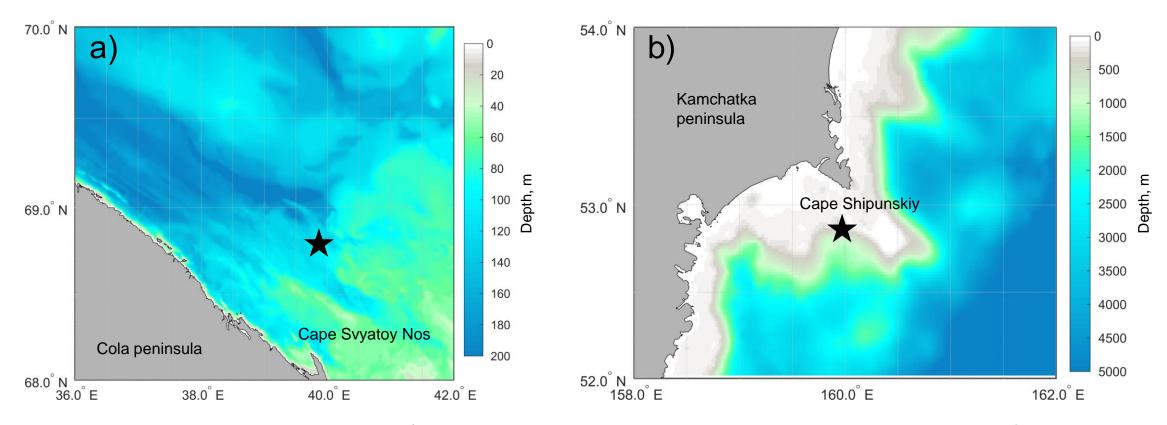


Short-period internal waves in tidal seas on various types of shelf according to *in situ* and satellite observations


Egor Svergun^{1,2} and Aleksey Zimin^{1,2}

¹Saint Petersburg State University, Saint Petersburg, Russia

²Shirshov Institute of Oceanology of Russian Academy of Sciences, Moscow, Russia

Regions under study

Average bottom slope: 4 m/km

Average bottom slope: 100 m/km

Regions of in situ measurements:
a) –in the Barents Sea in August 2016;
b) –in the Avacha Bay in August – September 2018.

Materials and methods

CTD-probe SBE-25

Thermistor chain PME

In situ measurement equipment

Landsat 8

Sentinel 2

Satellite observations

Phase speed of NLIW's by in situ measuremens (Kozlov et al., 2014):

$$c = \sqrt{g \frac{\Delta \rho}{\rho} \frac{h_1 (H - h_1)}{h_1 + (H - h_1)}}$$

Phase speed of NLIW's by in satellite observations

by in satellite observations (Kozlov et al., 2014):
$$c = \sqrt{\frac{g}{k}} \frac{\Delta \rho}{\rho} \frac{1}{\operatorname{cth}(kh_1) + \operatorname{cth}(k(H - h_1))}$$

$$TBF = \frac{2\pi N^2}{\omega} \left[Q_x \frac{\partial H}{\partial x} + Q_y \frac{\partial H}{\partial y} \right]$$
Internal Froude number (Jackson et al., 2012):

g – gravity acceleration, $\Delta \rho = \rho_2 - \rho_1$ ρ_2 – density of lower layer ρ_1 – density of upper layer, $\rho = (\rho_2 + \rho_1)/2$ H – total water depth, h₁ – thickness of upper layer, k - 2π/λ, λ - wavelength.

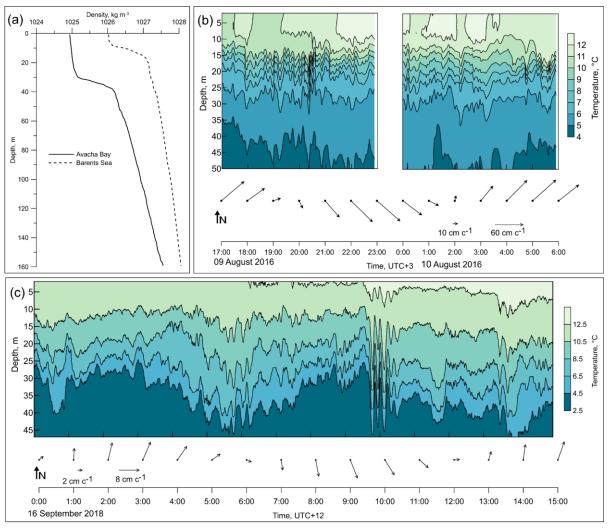
Ursell parameter (Serebryanyy, 1985):

$$\sigma^{2} = \frac{\alpha}{\beta} \eta (\lambda / 2)^{2}$$

$$\alpha = \frac{3}{2} c \frac{1 - h_{1} / h_{2}}{h_{1}} \qquad \beta = \frac{c h_{1} h_{2}}{6}$$

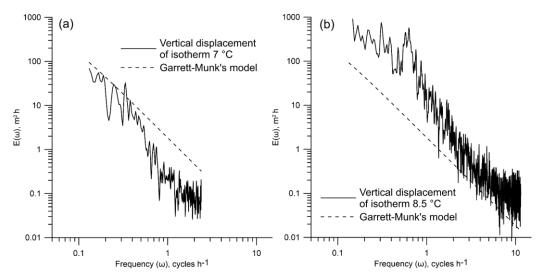
Tidal body force criterium (Pichon, 2013):

$$TBF = \frac{2\pi N^2}{\omega} \left[Q_x \frac{\partial H}{\partial x} + Q_y \frac{\partial H}{\partial y} \right]$$


$$Fr = \frac{V_m}{c}$$

n – amplitude of NLIW's. h₂ – thickness of lower layer, N² – Brunt-Vaisala frequency, ω – tidal frequency,

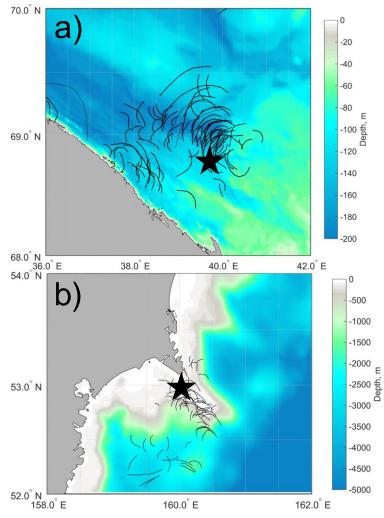
 Q_x and Q_v – zonal and meridional amplitude of tidal flux,


dH/dx and dH/dy - zonal and meridional topography gradient, V_m – magnitude of tidal current.

NLIW's characteristics by in situ observations

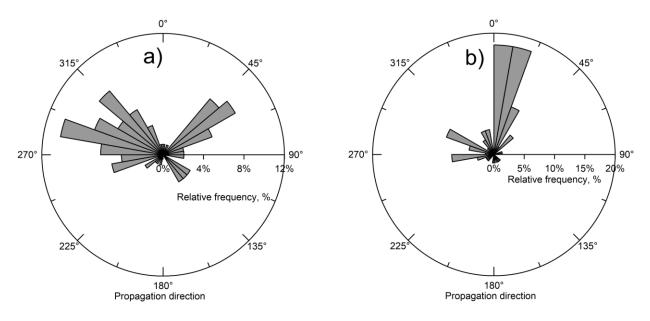
- a) profiles of vertical density distribution according to CTD data
- b) recording of isotherm fluctuations and tidal currents of the M2 harmonic for the Barents Sea;
- c) Recording of oscillations of isotherms and tidal currents of the M2 harmonic for the Avacha Bay.

Characteristic	Barents	Avacha
	Sea	Bay
η, m	4	8
c, m/s	0.57	0.65
σ^2	15	28

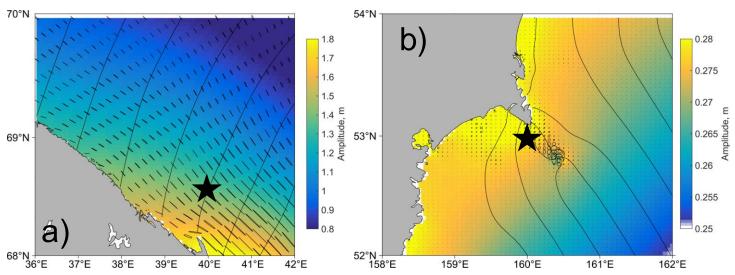


The spectrum of vertical displacements of isotherms in the pycnocline layer, combined with the theoretical Garrett-Munk spectrum:

- a) -in the Barents Sea;
- b) -in the Avacha Bay.

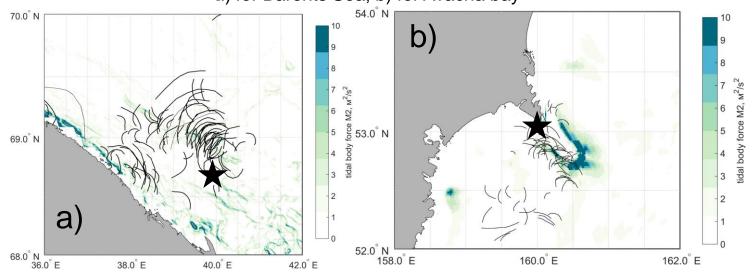

NLIW's characteristics by satellite observations

Position of the manifestations of NLIW's according to satellite observations:


- a) in the Barents Sea;
- b) in the Avacha Bay.

Characteristic		Barents Sea	Avacha Bay
Total number of NLIW's		93	72
manifestations			
Wavelength, m	average	800	400
	maximum	1900	800
Length of leading	average	26	14
crests, km	maximum	50	39
c, m/s satellite/in situ		0.6/0.65	0.51/0.57

Circular histograms of the propagation directions of the NLIW's manifestations:
a) in the Barents Sea; b) in the Avacha Bay


Possible mechanism of NLIW's generation

Near the points of in situ measurements: for Barents sea Fr≈1 for Avacha bay Fr≈0.6

Isoamplitudes and isophases of level fluctuations and ellipses of tidal currents by TPXO9 atlas [Egbert and Erofeeva, 2002]:

a) for Barents Sea; b) for Avacha bay

Possible mechanism of generation

In the Barents Sea – lee-wave generation (Jackson et al., 2012)

In the Avacha bay – disintegration of internal tide (Jackson et al., 2012)

Tidal body force for the harmonics M2: a) in the Barents Sea; b) in the Avacha Bay.

Thank you for your attention!

