Risk workflow for **CAS**cading and **CO**mpounding hazards in **CO**astal urban areas ## - CASCO - **Cecilia I. Nievas**¹, Laurens M. Bouwer², **Morelia Urlaub**³, Alexey Androsov⁴, Andrey Babeyko¹, Christian Berndt³, Fabrice Cotton¹, Juan Camilo Gomez-Zapata¹, Jens Karstens³, Heidrun Kopp³, Danijel Schorlemmer¹, Hui Tang¹ 23 May 2022 ¹ GFZ, ² GERICS (HEREON), ³ GEOMAR, ⁴ AWI Heat wave in Sicily August 2021 THE LOCAL (1) Covid-19 Practical tips Learn about Italy Italian language Jobs CLIMATE HEATWAVE: Italy set to report new European record high temperature at 48.8C Regional authorities in Sicily recorded a temperature reading of 48.8 degrees Celsius (119.8 Fahrenheit) on Wednesday, amid an extreme heatwave dubbed "Lucifer". Published: 11 August 2021 18:32 CEST # Innovation Pool Project **CASCO** Our central research question: How can a **single workflow** be defined that simulates the **full risk chain** from geophysical and climatic **hazards to impacts and responses**— to provide comprehensive insights on the effects of extreme compounding and cascading events and their cumulative impacts in urban areas? **GEOMAR** #### **Consequence Modelling** Medium- to Long-Term Response Source: IPCC SROCC (Box 4.3), 2019 ## Our Innovative Points Estimating consequences due to the occurrence of compounding geophysical and climatic events. Working on extreme event scenarios that are not commonly studied, going past classical earthquake-only, earthquake-plus-tsunami, or climatic-only scenarios. ## **Our Innovative Points** Estimating consequences due to the occurrence of compounding geophysical and climatic events. Working on extreme event scenarios that are not commonly studied, going past classical earthquake-only, earthquake-plus-tsunami, or climatic-only scenarios. Characterising exposure and vulnerability for multi-hazard applications, accounting for cumulative effects. ## **Our Innovative Points** Estimating consequences due to the occurrence of compounding geophysical and climatic events. Working on extreme event scenarios that are not commonly studied, going past classical earthquake-only, earthquake-plus-tsunami, or climatic-only scenarios. Characterising exposure and vulnerability for multi-hazard applications, accounting for cumulative effects. Propagating uncertainties along the whole risk chain.